化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 237-245.DOI: 10.11949/0438-1157.20241354
• 流体力学与传递现象 • 上一篇
收稿日期:2024-11-25
修回日期:2024-12-13
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
徐肖肖
作者简介:郭纪超(2000—),男,硕士研究生,202210131098@stu.cqu.edu.cn
基金资助:
Jichao GUO(
), Xiaoxiao XU(
), Yunlong SUN
Received:2024-11-25
Revised:2024-12-13
Online:2025-06-25
Published:2025-06-26
Contact:
Xiaoxiao XU
摘要:
植物工厂内气流组织的精准化分析是探究植物健康生长的重要基石,然而,目前针对植物工厂内部
中图分类号:
郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245.
Jichao GUO, Xiaoxiao XU, Yunlong SUN. Airflow simulation and optimization based on
| 边界条件 | 参数 |
|---|---|
| 进风口 | 入口速度 1.70 m/s,温度 22.5℃, CO2摩尔分数 0.033% |
| 出风口 | 出口压力 101325 Pa,温度 22.5℃, CO2摩尔分数 0.033% |
| LED灯板 | 恒温壁面 32℃ |
| 植物区域 | 多孔介质区域, |
| 栽培板 | 绝热壁面 |
| 壁面 | 绝热壁面 |
表1 边界条件
Table 1 Boundary conditions
| 边界条件 | 参数 |
|---|---|
| 进风口 | 入口速度 1.70 m/s,温度 22.5℃, CO2摩尔分数 0.033% |
| 出风口 | 出口压力 101325 Pa,温度 22.5℃, CO2摩尔分数 0.033% |
| LED灯板 | 恒温壁面 32℃ |
| 植物区域 | 多孔介质区域, |
| 栽培板 | 绝热壁面 |
| 壁面 | 绝热壁面 |
| 方程 | 源项 |
|---|---|
| 质量方程: | |
动量方程: | |
能量方程: 组分输运方程: |
表2 控制方程
Table 2 Governing equations
| 方程 | 源项 |
|---|---|
| 质量方程: | |
动量方程: | |
能量方程: 组分输运方程: |
| 送风速度/(m/s) | 进出口压降/Pa | 送风口面积/m2 | 能耗/W |
|---|---|---|---|
| 1.7 | 2.73 | 0.64 | 3.83 |
| 2.5 | 5.69 | 0.64 | 11.74 |
| 3.4 | 9.60 | 0.64 | 26.95 |
| 4.2 | 14.88 | 0.64 | 51.59 |
| 5.1 | 20.93 | 0.64 | 88.12 |
表3 不同送风速度下的压降和能耗
Table 3 Pressure drop and energy consumption at different supply speeds
| 送风速度/(m/s) | 进出口压降/Pa | 送风口面积/m2 | 能耗/W |
|---|---|---|---|
| 1.7 | 2.73 | 0.64 | 3.83 |
| 2.5 | 5.69 | 0.64 | 11.74 |
| 3.4 | 9.60 | 0.64 | 26.95 |
| 4.2 | 14.88 | 0.64 | 51.59 |
| 5.1 | 20.93 | 0.64 | 88.12 |
| 1 | Graamans L, Baeza E, van den Dobbelsteen A, et al. Plant factories versus greenhouses: comparison of resource use efficiency[J]. Agricultural Systems, 2018, 160: 31-43. |
| 2 | Kozai T. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory[J]. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 2013, 89(10): 447-461. |
| 3 | Zhang R, Liu T, Ma J S. Plant factory: a new method for reducing carbon emissions[C]//AIP Conference Proceedings. Penang, Malaysia. Author(s), 2017, 1820: 1-5. |
| 4 | Ramin S, Fatemeh K, et al. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering,, 2018, 11(1): 1-22. |
| 5 | Ahamed M S, Sultan M, Monfet D, et al. A critical review on efficient thermal environment controls in indoor vertical farming[J]. Journal of Cleaner Production, 2023, 425: 138923. |
| 6 | Chen H Y, Dong X, Lei J, et al. Life cycle assessment of carbon capture by an intelligent vertical plant factory within an industrial park[J]. Sustainability, 2024, 16(2): 697. |
| 7 | Wang A R, Lv J R, Wang J, et al. CO2 enrichment in greenhouse production: towards a sustainable approach[J]. Frontiers in Plant Science, 2022, 13: 1029901. |
| 8 | Zhang Y, Kacira M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD)[J]. Biosystems Engineering, 2022, 220: 73-86. |
| 9 | 张倩茹, 张旭, 叶蔚, 等. 大空间重气泄漏下速度场、浓度场特性分析[J]. 化工学报, 2020, 71(S1): 57-67. |
| Zhang Q R, Zhang X, Ye W, et al. Analysis of velocity and concentration field characteristics of heavy gas leakage in large space[J]. CIESC Journal, 2020, 71(S1): 57-67. | |
| 10 | 利一锋, 许国强. 空调教室CO2分布规律及通风量研究[J]. 制冷, 2018, 37(2): 24-29. |
| Li Y F, Xu G Q. Study on the distribution of CO2 and ventilation in air-conditioned classrooms[J]. Refrigeration, 2018, 37(2): 24-29. | |
| 11 | 金梧凤, 贾利芝, 张燕. 空调送风速度和送风角度对可燃性冷媒R32泄漏扩散规律的影响[J]. 化工学报, 2015, 66(6): 2351-2358. |
| Jin W F, Jia L Z, Zhang Y. Effect of air supply velocity and angle on R32 leakage and diffusion[J]. CIESC Journal, 2015, 66(6): 2351-2358. | |
| 12 | 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340. |
| Xu G, Pang L P. Simulation and optimization of air supply system layout for special vehicle cabin[J]. CIESC Journal, 2020, 71(S1): 335-340. | |
| 13 | Zhang Y, Yasutake D, Hidaka K, et al. CFD analysis for evaluating and optimizing spatial distribution of CO2 concentration in a strawberry greenhouse under different CO2 enrichment methods[J]. Computers and Electronics in Agriculture, 2020, 179: 105811. |
| 14 | Boulard T, Roy J C, Pouillard J B, et al. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics[J]. Biosystems Engineering, 2017, 158: 110-133. |
| 15 | Roy J, Boulard T, et al. Experimental and CFD results on the CO2 distribution in a semi closed greenhouse[C]// Proceedings of the International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037, F, 2013. |
| 16 | 余海波. 植物工厂条件下光强和气流对生菜生长和叶烧病的影响及调控优化[D]. 长春: 吉林大学, 2023. |
| Yu H B. The effects of light intensity and airflow on lettuce growth and leaf burn under plant factory conditions and their regulation optimization[D]. Changchun: Jilin University, 2023 | |
| 17 | 李子扬, 郑楠, 方嘉宾, 等. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
| Li Z Y, Zheng N, Fang J B, et al. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle[J]. CIESC Journal, 2024, 75(6): 2143-2156. | |
| 18 | 李霏, 杨翠丽, 李文静, 等. 基于均匀分布NSGAⅡ算法的污水处理多目标优化控制[J]. 化工学报, 2019, 70(5):1868-1878. |
| Li F, Yang C L, Li W J, et al. Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution[J]. CIESC Journal, 2019, 70(5): 1868-1878. | |
| 19 | 刘焕. 基于CFD的人工光型植物工厂通风模拟与优化研究[D]. 北京: 中国农业科学院, 2018. |
| Liu H. Simulation and optimization of ventilation in artificial light plant factory based on CFD[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
| 20 | Fatnassi H, Bournet P E, Boulard T, et al. Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems: a review[J]. Biosystems Engineering, 2023, 230: 388-408. |
| 21 | Nebbali R, Roy J C, Boulard T. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse[J]. Renewable Energy, 2012, 43: 111-129. |
| 22 | Ozgumus T, Mobedi M, Ozkol U. Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 308-318. |
| 23 | Determining optimal CO2 concentration of greenhouse tomato based on PSO-SVM[J]. Applied Engineering in Agriculture, 2017, 33(2): 157-166. |
| 24 | Yu H B, Zhang L, Yu H Y, et al. Sustainable development optimization of a plant factory for reducing tip burn disease[J]. Sustainability, 2023, 15(6): 5607. |
| 25 | 郑阳光. CO2管道泄漏扩散实验及数值模拟研究[D]. 大连: 大连理工大学, 2017. |
| Zheng Y G. Experimental and numerical simulation study on leakage and diffusion of CO2 pipeline[D]. Dalian: Dalian University of Technology, 2017. | |
| 26 | Zhang Y, Kacira M, An L L. A CFD study on improving air flow uniformity in indoor plant factory system[J]. Biosystems Engineering, 2016, 147: 193-205. |
| 27 | Zhou J Q, Kim C N. Numerical investigation of indoor CO2 concentration distribution in an apartment[J]. Indoor and Built Environment, 2011, 20(1): 91-100. |
| 28 | Bijad E, Delavar M A, Sedighi K. CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment[J]. Alexandria Engineering Journal, 2016, 55(4): 3135-3144. |
| 29 | Lee C M, Chen R S. Optimal self-tuning PID controller based on low power consumption for a server fan cooling system[J]. Sensors, 2015, 15(5): 11685-11700. |
| 30 | Li M Q, Yang S X, Liu X H. Shift-based density estimation for Pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025. |
| [3] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [4] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [5] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [6] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [7] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [8] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [9] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [10] | 徐东亮, 赵彬彬, 孙逸玫, 刘婷婷, 刘筱然, 陈明功. 基于修正多孔介质模型的RPB模拟与流场特性研究[J]. 化工学报, 2025, 76(4): 1569-1582. |
| [11] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [12] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [13] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [14] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
| [15] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号