化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3585-3595.DOI: 10.11949/0438-1157.20241224
杨鹏1(
), 尤万里2, 凌忠钱1(
), 曾宪阳1, 李允超1, 林佳一1, 王丽建3,4, 袁定琨1
收稿日期:2024-10-31
修回日期:2025-03-13
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
凌忠钱
作者简介:杨鹏(1998—),男,硕士研究生,s22020804072@cjlu.edu.cn
基金资助:
Peng YANG1(
), Wanli YOU2, Zhongqian LING1(
), Xianyang ZENG1, Yunchao LI1, Jiayi LIN1, Lijian WANG3,4, Dingkun YUAN1
Received:2024-10-31
Revised:2025-03-13
Online:2025-07-25
Published:2025-08-13
Contact:
Zhongqian LING
摘要:
挥发性有机化合物(VOCs)的排放问题日益凸显,对生态环境及公众健康构成了严重威胁。针对治理VOCs排放问题自行设计并搭建了进气风量为200 m3/h、尺寸为2915 mm×1150 mm×2200 mm的紧凑式三室RTO实验装置,以制药行业中排放量占比较大的乙酸乙酯作为研究对象,探究在不同工况条件下紧凑式RTO装置处理乙酸乙酯废气的去除效率,热效率以及蓄热室、氧化室和出口的温度特性。实验结果表明,氧化室温度在750~850℃范围内,RTO系统对VOCs的去除效率大于97%。此外,进气风量降低可以提高乙酸乙酯的氧化分解效率,吹扫风量增加亦能提升乙酸乙酯的去除效果,阀门换向时间会影响蓄热室温度和氧化室内压力,进而影响系统的稳定性和热效率。本设计开发的紧凑式三室RTO装置在处理乙酸乙酯废气方面表现出高效性能,去除率在97%~99%之间,热效率超过96%。
中图分类号:
杨鹏, 尤万里, 凌忠钱, 曾宪阳, 李允超, 林佳一, 王丽建, 袁定琨. 紧凑式三室RTO系统处理乙酸乙酯废气性能的实验研究[J]. 化工学报, 2025, 76(7): 3585-3595.
Peng YANG, Wanli YOU, Zhongqian LING, Xianyang ZENG, Yunchao LI, Jiayi LIN, Lijian WANG, Dingkun YUAN. Experimental study on performance of compact three-chamber RTO system for treating waste gas containing ethyl acetate[J]. CIESC Journal, 2025, 76(7): 3585-3595.
| 氧化室温度/℃ | 乙酸乙酯浓度/(mg/m3) | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|
| 600 | 1000 | 200 | 120 |
| 650 | 1000 | 200 | 120 |
| 700 | 1000 | 200 | 120 |
| 750 | 1000 | 200 | 120 |
| 800 | 1000 | 200 | 120 |
| 850 | 1000 | 200 | 120 |
表1 氧化室温度实验工况
Table 1 Oxidation chamber temperature test operating conditions
| 氧化室温度/℃ | 乙酸乙酯浓度/(mg/m3) | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|
| 600 | 1000 | 200 | 120 |
| 650 | 1000 | 200 | 120 |
| 700 | 1000 | 200 | 120 |
| 750 | 1000 | 200 | 120 |
| 800 | 1000 | 200 | 120 |
| 850 | 1000 | 200 | 120 |
| 进气风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 阀门切换时间/s |
|---|---|---|---|
| 100 | 1000 | 800 | 120 |
| 120 | 1000 | 800 | 120 |
| 140 | 1000 | 800 | 120 |
| 160 | 1000 | 800 | 120 |
| 180 | 1000 | 800 | 120 |
| 200 | 1000 | 800 | 120 |
表2 进气风量实验工况
Table 2 Inlet air flow test operating conditions
| 进气风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 阀门切换时间/s |
|---|---|---|---|
| 100 | 1000 | 800 | 120 |
| 120 | 1000 | 800 | 120 |
| 140 | 1000 | 800 | 120 |
| 160 | 1000 | 800 | 120 |
| 180 | 1000 | 800 | 120 |
| 200 | 1000 | 800 | 120 |
| 吹扫风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|---|
| 0 | 1000 | 800 | 200 | 120 |
| 16.2 | 1000 | 800 | 200 | 120 |
| 32.4 | 1000 | 800 | 200 | 120 |
| 48.6 | 1000 | 800 | 200 | 120 |
| 64.8 | 1000 | 800 | 200 | 120 |
| 81.0 | 1000 | 800 | 200 | 120 |
表3 吹扫风量实验工况
Table 3 Purge flow rate test operating conditions
| 吹扫风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|---|
| 0 | 1000 | 800 | 200 | 120 |
| 16.2 | 1000 | 800 | 200 | 120 |
| 32.4 | 1000 | 800 | 200 | 120 |
| 48.6 | 1000 | 800 | 200 | 120 |
| 64.8 | 1000 | 800 | 200 | 120 |
| 81.0 | 1000 | 800 | 200 | 120 |
| 阀门切换时间/s | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) |
|---|---|---|---|
| 60 | 500,1000,1500,2000,2500 | 850 | 200 |
| 120 | 500,1000,1500,2000,2500 | 850 | 200 |
| 180 | 500,1000,1500,2000,2500 | 850 | 200 |
| 240 | 500,1000,1500,2000,2500 | 850 | 200 |
表4 阀门切换时间实验工况
Table 4 Valve switching time test operating conditions
| 阀门切换时间/s | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) |
|---|---|---|---|
| 60 | 500,1000,1500,2000,2500 | 850 | 200 |
| 120 | 500,1000,1500,2000,2500 | 850 | 200 |
| 180 | 500,1000,1500,2000,2500 | 850 | 200 |
| 240 | 500,1000,1500,2000,2500 | 850 | 200 |
图15 阀门切换时间180 s条件下氧化室内的压力波动及氧化室平均温度
Fig.15 Pressure fluctuation and average temperature in oxidation chamber under 180 s valve switching time condition
| [1] | Li S W, Lin Y Z, Liu G, et al. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review[J]. Environmental Science: Processes & Impacts, 2023, 25(4): 727-740. |
| [2] | Huss‐Marp J, Eberlein‐König B, Breuer K, et al. Influence of short‐term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals[J]. Clinical and Experimental Allergy, 2006, 36(3): 338-345. |
| [3] | Khan A, Kanwal H, Bibi S, et al. Volatile organic compounds and neurological disorders: from exposure to preventive interventions[M]//Environmental Contaminants and Neurological Disorders. Cham, Switzerland: Springer, 2021: 201-230. |
| [4] | Garg D, Mehndiratta M M, Wasay M, et al. Air pollution and headache disorders[J]. Annals of Indian Academy of Neurology, 2022, 25(): S35-S40. |
| [5] | Denisow-Pietrzyk M. Human skin reflects air pollution—a review of the mechanisms and clinical manifestations of environment-derived skin pathologies[J]. Polish Journal of Environmental Studies, 2021, 30(4): 3433-3444. |
| [6] | Ryerson T B, Trainer M, Holloway J S, et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies[J]. Science, 2001, 292(5517): 719-723. |
| [7] | 赵琳, 张英锋, 李荣焕, 等. VOC的危害及回收与处理技术[J]. 化学教育, 2015, 36(16): 1-6. |
| Zhao L, Zhang Y F, Li R H, et al. Harms, recycling and treatment technology of VOC[J]. Chinese Journal of Chemical Education, 2015, 36(16): 1-6 | |
| [8] | Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
| [9] | Belaissaoui B, Le Moullec Y, Favre E. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach[J]. Energy, 2016, 95: 291-302. |
| [10] | Gan G Q, Fan S Y, Li X Y, et al. Adsorption and membrane separation for removal and recovery of volatile organic compounds[J]. Journal of Environmental Sciences, 2023, 123: 96-115. |
| [11] | Yang Y, Wang G, Fang D, et al. Study of the use of a Pd-Pt-based catalyst for the catalytic combustion of storage tank VOCs[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22732-22743. |
| [12] | 王波, 马睿, 薛国程, 等. 工业有机废气热氧化技术研究进展[J]. 化工进展,2017, 36(11): 4232-4242. |
| Wang B, Ma R, Xue G C, et al. Research progress on thermal oxidation technology for industrial organic waste gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4232-4242. | |
| [13] | Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art[J]. Environment International, 2007, 33(5): 694-705. |
| [14] | 杨显万, 孙珮石, 黄若华,等. 生物法净化低浓度挥发性有机废气研究[J]. 中国工程科学, 2001, 3(9): 64-68. |
| Yang X W, Sun P S, Huang R H, et al. Study on biological purification of low concentration volatile organic waste gas[J]. Engineering Science, 2001, 3(9): 64-68. | |
| [15] | McDonald B C, de Gouw J A, Gilman J B, et al. Vical source of urban organic emissions[J]. Science, 2018, 359(6377): 760-764. |
| [16] | 吴桂平. 蓄热式燃烧技术在有机废气处理项目的应用[J].能源与环境, 2021(4): 56-58. |
| Wu G P. Application of regenerative combustion technology in organic waste gas treatment project[J]. Energy and Environment, 2021(4): 56-58. | |
| [17] | Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chinese Science Bulletin, 2013, 58(7): 724-730. |
| [18] | Cannon B J. Dual-chamber RTO oxidizers provide cost-effective VOC compliance for metal finishers and coaters[J]. Metal Finishing, 2003, 101(1): 53-56. |
| [19] | Chou M S, Hei C M, Huang Y W. Regenerative thermal oxidation of airborne N,N-dimethylformamide and its associated nitrogen oxides formation characteristics[J]. Journal of the Air & Waste Management Association, 2007, 57(8): 991-999. |
| [20] | Amelio M, Florio G, Morrone P, et al. The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO)[J]. International Journal of Energy Research,2008, 32(1): 24-34. |
| [21] | Hao X W, Li R X, Wang J, et al. Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment[J]. Environmental Engineering Research,2018, 23(4): 397-405. |
| [22] | 帅启凡, 陆建刚, 李健生. 蓄热式热力燃烧室结构模拟优化与应用效果分析[J]. 环境工程, 2022, 40(2):146-153. |
| Shuai Q F, Lu J G, Li J S. Analysis on structural simulation, optimization and application effect of a regenerative thermal oxidizer [J]. Environmental Engineering, 2022, 40(2): 146-153. | |
| [23] | Choi B S, Yi J. Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds[J]. Chemical Engineering Journal, 2000, 76(2): 103-114. |
| [24] | Wang F Z, Lei X X, Hao X W. Key factors in the volatile organic compounds treatment by regenerative thermal oxidizer[J]. Journal of the Air & Waste Management Association, 2020, 70(5): 557-567. |
| [25] | You Y H, Huang H, Shao G W, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator[J]. Applied Thermal Engineering,2016, 108: 1243-1250. |
| [26] | 王琛, 杨佳莹, 王宝琳, 等. 山东省化学合成类制药VOCs排放特征及影响[J]. 环境科学, 2024, 45(12): 7012-7020. |
| Wang C, Yang J Y, Wang B L, et al. Characteristics and impact of VOCs emissions from chemical synthesis pharmaceuticals in Shandong province[J]. Environmental Science, 2024, 45 (12): 7012-7020. | |
| [27] | Ma J W, Li L. VOC emitted by biopharmaceutical industries: source profiles, health risks, and secondary pollution[J]. Journal of Environmental Sciences, 2024, 135: 570-584. |
| [28] | 郝立苗, 黄妃慧, 王勇伟, 等. 蜂窝陶瓷的研究现状及应用[J]. 佛山陶瓷, 2021, 31(6): 32-39. |
| Hao L M, Huang F H, Wang Y W, et al. Research status and application of honeycomb ceramics[J]. Foshan Ceramics, 2021, 31(6): 32-39. | |
| [29] | Iijima S, Nakayama K, Kuchar D, et al. Optimum conditions for effective decomposition of toluene as VOC gas by pilot-scale regenerative thermal oxidizer[J]. World Academy of Science, Engineering and Technology, 2008, 2: 1589-1594. |
| [30] | 王洋. 耦合多步反应的VOCs蓄热燃烧过程数值模拟[D]. 镇江: 江苏科技大学, 2023. |
| Wang Y. Numerical simulation of VOCs regenerative combustion process coupled with multi-step reaction[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. | |
| [31] | 王姣. 蓄热式热氧化炉在处理挥发性有机气体中的关键因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| Wang J. Research on key factors of regenerative thermal oxidation furnace in treating volatile organic gases[D]. Harbin: Harbin Institute of Technology, 2018. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [4] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [5] | 李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369. |
| [6] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [7] | 赵美, 甘雨欣, 赵绍磊, 杨令, 王亭杰. 硅橡胶用纳米二氧化硅表面有机修饰及补强机理研究进展[J]. 化工学报, 2025, 76(7): 3125-3136. |
| [8] | 董泽明, 娄聚伟, 王楠, 陈良奇, 王江峰, 赵攀. 含余热回收的超临界压缩二氧化碳储能系统热力学特性研究[J]. 化工学报, 2025, 76(7): 3477-3486. |
| [9] | 范振宁, 梁海宁, 房茂立, 赫一凡, 于帅, 闫兴清, 安佳然, 乔帆帆, 喻健良. CO2管道不同相态节流放空特性研究与对比[J]. 化工学报, 2025, 76(7): 3742-3751. |
| [10] | 吴雷, 胡紫璇, 高渊, 刘长波, 曹虎生, 刘田田, 朱瑞玉, 周军. 微波联合生物炭活化过硫酸盐氧化修复多环芳烃污染土壤研究[J]. 化工学报, 2025, 76(7): 3659-3670. |
| [11] | 王树宇, 薛志亮, 朱静, 付鑫, 周永刚, 胡一鸣, 黄群星. 废弃全钢胎颗粒热解过程中质量和形态变化研究[J]. 化工学报, 2025, 76(7): 3459-3467. |
| [12] | 卢煦旸, 徐强, 康浩鹏, 史健, 曹泽水, 郭烈锦. 化学链制氢系统中磁铁矿氧载体的CO还原特性研究[J]. 化工学报, 2025, 76(7): 3286-3294. |
| [13] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [14] | 段浩, 王文超, 刘栋, 尹晓军, 胡二江, 曾科. 甲醇喷射时刻对甲醇/柴油双直喷发动机性能的影响[J]. 化工学报, 2025, 76(7): 3552-3560. |
| [15] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号