化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3459-3467.DOI: 10.11949/0438-1157.20241256
王树宇1(
), 薛志亮2(
), 朱静2, 付鑫3, 周永刚2, 胡一鸣1, 黄群星2
收稿日期:2024-11-07
修回日期:2025-04-03
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
薛志亮
作者简介:王树宇(1975—),男,学士,高级工程师,wangsy1@wzgroup.cn
基金资助:
Shuyu WANG1(
), Zhiliang XUE2(
), Jing ZHU2, Xin FU3, Yonggang ZHOU2, Yiming HU1, Qunxing HUANG2
Received:2024-11-07
Revised:2025-04-03
Online:2025-07-25
Published:2025-08-13
Contact:
Zhiliang XUE
摘要:
热解是废轮胎高值资源化利用的重要途径,研究废轮胎颗粒热解过程中质量及形态变化对于优化设计热解反应装置具有重要意义。基于自行搭建设计的光学图像分析可视化热解实验装置,开展了不同温度下轮胎颗粒热解过程中的质量及形态变化实验。研究结果表明,反应温度对热解反应速率具有显著影响。当温度从400℃升高至600℃时,最大热解反应速率提高了约1.9倍。此外,轮胎颗粒在热解过程中经历了先膨胀、再开裂、后塌缩的动态变化过程,开裂阶段伴随着质量的快速下降。同时,热解温度对膨胀倍率和失重速率峰值出现的时间间隔具有显著影响。
中图分类号:
王树宇, 薛志亮, 朱静, 付鑫, 周永刚, 胡一鸣, 黄群星. 废弃全钢胎颗粒热解过程中质量和形态变化研究[J]. 化工学报, 2025, 76(7): 3459-3467.
Shuyu WANG, Zhiliang XUE, Jing ZHU, Xin FU, Yonggang ZHOU, Yiming HU, Qunxing HUANG. Experimental study on mass and morphological character during scrap tire pyrolysis[J]. CIESC Journal, 2025, 76(7): 3459-3467.
| 工业分析/% | Qb,ad/(J/g) | 元素分析/% | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Cad | Had | Nad | Sad | Oad | |
| 1.12 | 6.39 | 62.67 | 29.82 | 37020.4 | 78.96 | 7.08 | 1.01 | 2.08 | 3.36 |
表1 废轮胎颗粒工业分析与元素分析
Table 1 Proximate analysis and ultimate analysis of tire particles
| 工业分析/% | Qb,ad/(J/g) | 元素分析/% | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Cad | Had | Nad | Sad | Oad | |
| 1.12 | 6.39 | 62.67 | 29.82 | 37020.4 | 78.96 | 7.08 | 1.01 | 2.08 | 3.36 |
| [1] | Mouneir S M, El-Shamy A M. A review on harnessing the energy potential of pyrolysis gas from scrap tires: challenges and opportunities for sustainable energy recovery[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106302. |
| [2] | Rogachuk B E, Okolie J A. Waste tires based biorefinery for biofuels and value-added materials production[J]. Chemical Engineering Journal Advances, 2023, 14: 100476. |
| [3] | 沈孟飞, 宋虎潮, 邢定一, 等. 废旧轮胎热解吸附强化重整制氢特性及经济性分析[J]. 西安交通大学学报, 2024, 58(10): 222-232. |
| Shen M F, Song H C, Xing D Y, et al. Characteristics and economic analysis of hydrogen production process through pyrolysis and adsorption enhanced reforming of waste tires[J]. Journal of Xi'an Jiaotong University, 2024, 58(10): 222-232. | |
| [4] | Han W W, Han D S, Chen H B. Pyrolysis of waste tires: a review[J]. Polymers, 2023, 15(7): 1604. |
| [5] | Tang X J, Chen Z H, Liu J Y, et al. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires[J]. Journal of Hazardous Materials, 2021, 402: 123516. |
| [6] | Sivaraman S, Michael Anbuselvan N, Venkatachalam P, et al. Waste tire particles as efficient materials towards hexavalent chromium removal: characterisation, adsorption behaviour, equilibrium, and kinetic modelling[J]. Chemosphere, 2022, 295: 133797. |
| [7] | Jiang G, Pan J, Che K, et al. Recent developments of waste tires derived multifunctional carbonaceous nanomaterials[J]. Materials Today Sustainability, 2023, 24: 100576. |
| [8] | 屈搏宇. 废轮胎热解表观动力学[D]. 大连: 大连理工大学, 2021. |
| Qu B Y. Apparent kinetics of pyrolysis of waste tires[D]. Dalian: Dalian University of Technology, 2021. | |
| [9] | 胡雨婷. 基于溶胀改性耦合微波催化的废轮胎热解制油特性研究[D]. 济南: 山东大学,2024. |
| Hu Y T. Study on pyrolytic oil production from waste tires via swelling modification coupled with microwave catalytic pyrolysis[D]. Jinan: Shandong University, 2024. | |
| [10] | 季炫宇, 林伟坚, 周雄, 等. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
| Ji X Y, Lin W J, Zhou X, et al. Research status and progress of waste tire pyrolysis technology[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4498-4512. | |
| [11] | 潘宇涵, 徐俊, 赵光杰, 等. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
| Pan Y H, Xu J, Zhao G J, et al. Development of pilot-plant for the step pyrolysis of waste tires and analysis of product characteristics[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1240-1247. | |
| [12] | Arabiourrutia M, Lopez G, Artetxe M, et al. Waste tyre valorization by catalytic pyrolysis—a review[J]. Renewable and Sustainable Energy Reviews, 2020, 129: 109932. |
| [13] | 杨殿才, 潘宇涵, 黄群星, 等. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650. |
| Yang D C, Pan Y H, Huang Q X, et al. Study on catalytic reforming of tar at low temperature to produce hydrogen-rich gas by tire pyrolysis char[J]. CIESC Journal, 2020, 71(2): 642-650. | |
| [14] | 胡国华, 张一帆, 张立群. 废橡胶裂解研究进展[J]. 高分子通报, 2017(12): 1-13. |
| Hu G H, Zhang Y F, Zhang L Q. Progress of waste rubber in the application of pyrolysis[J]. Polymer Bulletin, 2017(12): 1-13. | |
| [15] | 戴贤明. 废轮胎热解过程及产物特性试验研究[D]. 武汉: 华中科技大学, 2009. |
| Dai X M. Experimental study on pyrolysis process and product characteristics of waste tires[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
| [16] | Omwoyo J B, Kimilu R K, Onyari J M. Catalytic pyrolysis and composition evaluation of tire pyrolysis oil[J]. Chemical Engineering Communications, 2023, 210(7): 1086-1096. |
| [17] | Duan J H, Chen Y K, Pan Q P, et al. Evolution of pyrolysis characteristics and modeling of particle shrinkage of carbon black from waste tire pyrolysis[J]. Advanced Powder Technology, 2024, 35(7): 104560. |
| [18] | Campuzano F, Brown R C, Martínez J D. Auger reactors for pyrolysis of biomass and wastes[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 372-409. |
| [19] | 王兵. 废轮胎回转窑裂解传热与反应耦合关系及反应器优化研究[D]. 南京: 东南大学, 2022. |
| Wang B. Study on coupling relationship between heat transfer and reaction in pyrolysis of waste tire in rotary kiln and optimization of reactor[D]. Nanjing: Southeast University, 2022. | |
| [20] | 杨超, 矫庆泽, 冯彩虹, 等. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889. |
| Yang C, Jiao Q Z, Feng C H, et al. Research progress on catalytic cracking of waste tires[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3877-3889. | |
| [21] | Gao N B, Wang F C, Quan C, et al. Tire pyrolysis char: processes, properties, upgrading and applications[J]. Progress in Energy and Combustion Science, 2022, 93: 101022. |
| [22] | Yazdani E, Hashemabadi S H, Taghizadeh A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature[J]. Waste Management, 2019, 85: 195-201. |
| [23] | 张元伟, 赵基钢, 袁向前, 等. 重型卡车废轮胎胶粉热解特性探究[J]. 应用化工, 2022, 51(8): 2182-2186, 2193. |
| Zhang Y W, Zhao J G, Yuan X Q, et al. Pyrolysis characteristics of waste heavy truck tire powder from heavy truck[J]. Applied Chemical Industry, 2022, 51(8): 2182-2186, 2193. | |
| [24] | 夏勇,阳宇,朱聪,等. 废轮胎热解过程中的动力学与热力学特性及热解油组分分析[J]. 低碳化学与化工, 2023, 48(4): 36-45. |
| Xia Y, Yang Y, Zhu C, et al. Kinetic and thermodynamic characteristics in scrap tyres pyrolysis process and components analysis of pyrolysis oil[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 36-45. | |
| [25] | 张岩. ZIF-8衍生催化剂催化有机固废热解特性研究[D]. 吉林: 东北电力大学, 2023. |
| Zhang Y. Study on pyrolysis characteristics of organic solid waste catalyzed by ZIF-8 derivative catalyst[D]. Jilin: Northeast Dianli University, 2023. | |
| [26] | Rijo B, Soares Dias A P, Wojnicki Ł. Catalyzed pyrolysis of scrap tires rubber[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107037. |
| [27] | Akkouche N, Balistrou M, Loubar K, et al. Heating rate effects on pyrolytic vapors from scrap truck tires[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 419-429. |
| [28] | 邓飞虎,王黎. 轮胎粒径对热解产物的影响[J]. 应用化工, 2019, 48(6): 1382-1384. |
| Deng F H, Wang L. Influences of tire size on pyrolysis products[J]. Applied Chemical Industry, 2019, 48(6): 1382-1384. | |
| [29] | Čepić Z, Mihajlović V, Đurić S, et al. Experimental analysis of temperature influence on waste tire pyrolysis[J]. Energies, 2021, 14(17): 5403. |
| [30] | Wei X, Zhong H W, Yang Q R, et al. Studying the mechanisms of natural rubber pyrolysis gas generation using RMD simulations and TG-FTIR experiments[J]. Energy Conversion and Management, 2019, 189: 143-152. |
| [31] | Han J, Li W, Liu D Y, et al. Pyrolysis characteristic and mechanism of waste tyre: a thermogravimetry-mass spectrometry analysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 1-5. |
| [32] | Li D, Lei S J, Lin F W, et al. Study of scrap tires pyrolysis—products distribution and mechanism[J]. Energy, 2020, 213: 119038. |
| [33] | 吴昭回, 林诚乾, 徐俊, 等. 废轮胎颗粒热解膨胀特性研究[J]. 环境工程, 2023, 41(S2): 505-510, 504. |
| Wu Z H, Lin C Q, Xu J, et al. Study on pyrolysis and expansion characteristics of waste tire particles[J]. Environmental Engineering, 2023, 41(S2): 505-510, 504. |
| [1] | 杨鹏, 尤万里, 凌忠钱, 曾宪阳, 李允超, 林佳一, 王丽建, 袁定琨. 紧凑式三室RTO系统处理乙酸乙酯废气性能的实验研究[J]. 化工学报, 2025, 76(7): 3585-3595. |
| [2] | 段浩, 王文超, 刘栋, 尹晓军, 胡二江, 曾科. 甲醇喷射时刻对甲醇/柴油双直喷发动机性能的影响[J]. 化工学报, 2025, 76(7): 3552-3560. |
| [3] | 杨浩杰, 刘春雨, 李雪娇, 于亮, 吕兴才. 低旋流配置下氨-甲烷-空气预混旋流火焰稳定性和排放特性[J]. 化工学报, 2025, 76(6): 3029-3040. |
| [4] | 朱迪, 高守建, 方望熹, 靳健. 水蒸气诱导相分离构筑海绵孔结构超亲水聚醚砜膜及其油/水乳液分离性能研究[J]. 化工学报, 2025, 76(5): 2397-2409. |
| [5] | 刘亮, 吴佳俊, 卿梦霞, 周光亚, 贺梓航. 落地油泥热解特性及工艺系统能量平衡分析[J]. 化工学报, 2025, 76(4): 1779-1787. |
| [6] | 徐东菱, 马跃, 龚露, 马桂丽, 王金可, 郭丰志, 王浩伦, 李思佳, 李术元, 岳长涛. 油页岩与烟煤混合流化热解实验研究[J]. 化工学报, 2025, 76(4): 1742-1753. |
| [7] | 李中青, 王志远, 栾小建, 梁四凯, 王凯. 电沉积-低氧分压法制备MnO涂层及其抑制石脑油热裂解结焦性能研究[J]. 化工学报, 2025, 76(3): 1050-1063. |
| [8] | 高越, 李丁, 高玉苗. 有机污染场地土壤催化氧化修复技术研究[J]. 化工学报, 2025, 76(3): 1297-1304. |
| [9] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [10] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| [11] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [12] | 赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282. |
| [13] | 钟屹, 周仕遇, 纠连朝, 李钰晓, 吴豪江, 周智勇. 废旧磷酸铁锂电池正极材料直接修复再生研究进展[J]. 化工学报, 2024, 75(S1): 1-13. |
| [14] | 袁玲雅, 张滢. 中国光伏产业发展及其资源环境影响[J]. 化工学报, 2024, 75(S1): 14-24. |
| [15] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号