| [1] |
Fujimori S, Inoue S. Carbon monoxide in main-group chemistry[J]. Journal of the American Chemical Society, 2022, 144(5): 2034-2050.
|
| [2] |
Kapetanaki S M, Burton M J, Basran J, et al. A mechanism for CO regulation of ion channels[J]. Nature Communications, 2018, 9(1): 907.
|
| [3] |
唐磊, 王振菲, 李聪利, 等. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293.
|
|
Tang L, Wang Z F, Li C L, et al. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74[J]. CIESC Journal, 2025, 76(5): 2279-2293.
|
| [4] |
Yin Y, Wen Z H, Shi L, et al. Cuprous/vanadium sites on MIL-101 for selective CO adsorption from gas mixtures with superior stability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11284-11292.
|
| [5] |
Li Y, Mei Y R, Zhang T, et al. Paths to carbon neutrality in China's chemical industry[J]. Frontiers in Environmental Science, 2022, 10: 999152.
|
| [6] |
Cheng X, Liao Y, Lei Z, et al. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation[J]. Journal of Membrane Science, 2023, 672: 121430.
|
| [7] |
Ma X Z, Albertsma J, Gabriels D, et al. Carbon monoxide separation: past, present and future[J]. Chemical Society Reviews, 2023, 52(11): 3741-3777.
|
| [8] |
郭强, 肇启东, 肖永厚. 双回流变压吸附高效分离CO/H2制备高纯H2和CO[J]. 化工学报, 2024, 75(11): 4298-4308.
|
|
Guo Q, Zhao Q D, Xiao Y H. Preparation of high-purity H2 and CO by efficient separation of CO/H2 using dual-reflux pressure swing adsorption process[J]. CIESC Journal, 2024, 75(11): 4298-4308.
|
| [9] |
Du S J, Huang J W, Ryder M R, et al. Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation[J]. Nature Communications, 2023, 14(1): 1197.
|
| [10] |
熊波, 陈健, 李克兵, 等. 工业排放气二氧化碳捕集与利用技术进展[J]. 低碳化学与化工, 2023, 48(1): 9-18.
|
|
Xiong B, Chen J, Li K B, et al. Technical progress in carbon dioxide capture and utilization of industrial vent gas[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(1): 9-18.
|
| [11] |
Yang S H, Xiao Y H, Zhang W Y, et al. Facile preparation of C u ( Ⅰ ) / 5 A via one-step impregnation with highly dispersed CuCl in ethanol single solvent toward selective adsorption of CO from H2 stream[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(48): 15958-15967.
|
| [12] |
Yue X, Wang S, Gao J X, et al. Effects of mesopore size on ethyl acetate adsorption-desorption behaviors over hierarchical ZSM-5/MCM-41 molecular sieves[J]. Separation and Purification Technology, 2024, 336: 126228.
|
| [13] |
Xue C L, Hao W M, Cheng W P, et al. Effects of pore size distribution of activated carbon (AC) on CuCl dispersion and CO adsorption for CuCl/AC adsorbent[J]. Chemical Engineering Journal, 2019, 375: 122049.
|
| [14] |
Oo W, Park J H, Zaw Win M, et al. Dual preservative effects of SnO2-chitosan on Cu1+-doped boehmite composites for stable CO adsorption properties[J]. Separation and Purification Technology, 2024, 348: 127631.
|
| [15] |
Li Y X, Zhong W, Zhou J J, et al. Reversible light-controlled CO adsorption via tuning π-complexation of Cu+ sites in azobenzene-decorated metal-organic frameworks[J]. Angewandte Chemie International Edition, 2022, 61(46): e202212732.
|
| [16] |
Wang Q, Wang M, Chen H W, et al. Fluorination strategy in GME zeolitic imidazolate frameworks for enhanced ethane/ethylene separation[J]. Separation and Purification Technology, 2025, 364: 132423.
|
| [17] |
Li C L, Wang J, Wang Z F, et al. Understanding the vacuum autoreduction behavior of Cu species in CuCl/NaY adsorbent for CO/N2 separation[J]. Microporous and Mesoporous Materials, 2024, 365: 112904.
|
| [18] |
Rao F, Liu M L, Liu C H, et al. Synthesis of binder-free pelletized Y zeolite for CO2 capture[J]. Carbon Capture Science & Technology, 2024, 10: 100166.
|
| [19] |
文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展: 能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381.
|
|
Wen Y R, Fu J, Liu D H. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation[J]. CIESC Journal, 2024, 75(4): 1370-1381.
|
| [20] |
Pardakhti M, Moharreri E, Wanik D, et al. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)[J]. ACS Combinatorial Science, 2017, 19(10): 640-645.
|
| [21] |
Yuan X Z, Suvarna M, Low S, et al. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons[J]. Environmental Science & Technology, 2021, 55(17): 11925-11936.
|
| [22] |
Tao W Y, Zhao W K, Zhao Q D, et al. Ensemble-learning-guided optimization design for metal-organic framework adsorbents toward CO adsorption[J]. Inorganic Chemistry, 2025, 64(18): 9237-9250.
|
| [23] |
Tao W Y, Cui Y J, Zhao Q D, et al. Prediction of the enhanced performance of C u ( Ⅰ ) - m o d i f i e d porous materials towards CO adsorption by using tree-based machine learning models[J]. Separation and Purification Technology, 2025, 359: 130850.
|
| [24] |
Li J, Liu T Y, Palansooriya K N, et al. Zeolite-catalytic pyrolysis of waste plastics: machine learning prediction, interpretation, and optimization[J]. Applied Energy, 2025, 382: 125258.
|
| [25] |
Al-Sakkari E G, Ragab A, So T M Y, et al. Machine learning-assisted selection of adsorption-based carbon dioxide capture materials[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110732.
|
| [26] |
Zhang W J, Chen J F, Huang G H, et al. Machine learning-assisted prediction and exploration of the homogeneous oxidation of mercury in coal combustion flue gas[J]. Environmental Science & Technology, 2025, 59(22): 11073-11082.
|
| [27] |
Jayarathna R, Onsree T, Drummond S, et al. Experimental discovery of novel ammonia synthesis catalysts via active learning[J]. Journal of Materials Chemistry A, 2024, 12(5): 3046-3060.
|
| [28] |
Xu H, Mguni L L, Yao Y L, et al. Machine learning-assisted high-throughput screening of MOFs for efficient adsorption and separation of CF4/N2 [J]. Journal of Cleaner Production, 2024, 461: 142634.
|
| [29] |
Xiong T, Cui J W, Hou Z M, et al. Prediction of arsenic adsorption onto metal organic frameworks and adsorption mechanisms interpretation by machine learning[J]. Journal of Environmental Management, 2023, 347: 119065.
|
| [30] |
Zheng G T, Zhang S Y, Meng L H, et al. Machine learning-guided design and synthesis of eco-friendly poly(ethylene oxide) membranes for high-efficacy CO2/N2 separation[J]. Advanced Functional Materials, 2024, 34(51): 2410075.
|