化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6465-6476.DOI: 10.11949/0438-1157.20250732
收稿日期:2025-07-04
修回日期:2025-08-21
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
邱彤
作者简介:陶一(2001—),女,硕士研究生,taoy24@mails.tsinghua.edu.cn
Yi TAO1(
), Chen ZHANG1, Hongxiang ZHU2, Tong QIU1(
)
Received:2025-07-04
Revised:2025-08-21
Online:2025-12-31
Published:2026-01-23
Contact:
Tong QIU
摘要:
催化重整是提高汽油辛烷值、生产高附加值芳烃和氢气的重要炼油工艺,针对催化重整转化过程开展分子水平的反应与物质转化规律的研究具有重要意义。利用分子重构和完备反应网络构造方法,构建了催化重整分子级模型,从而能够准确模拟不同条件下的产物组成。在此基础上,提出了针对分子级模型的物质流量分析方法。该方法首先利用反应网络的结构化表示矩阵,构造物质在反应之间的流转方程组,解析单一反应、关键组分,以及集总后的各类型反应、各类烃分子的物质流转规律,分析其在催化重整完整反应体系中的作用。提出了多尺度网络结构图与反应-物质流桑基图相结合的可视化方法,清晰、直观地展示和分析核心组分之间、不同烃类与反应类型之间的物质流量转化关系和重要性对比。还研究了不同反应温度、反应压力下的催化重整反应体系中物质流转规律的变化趋势,从分子级反应层面解释操作条件对产物组成的影响。物质流量分析方法实现了微观的物质流量和宏观的反应规律间的连接,为探究催化重整反应机理、制定生产调度方案、优化工艺流程提供了新的视角和思路。
中图分类号:
陶一, 张晨, 朱洪翔, 邱彤. 基于催化重整分子级模型的物质流量分析方法[J]. 化工学报, 2025, 76(12): 6465-6476.
Yi TAO, Chen ZHANG, Hongxiang ZHU, Tong QIU. Substance flow analysis method based on molecular-level model for catalytic reforming process[J]. CIESC Journal, 2025, 76(12): 6465-6476.
| 矩阵名称 | 矩阵维度 | 矩阵元素含义 |
|---|---|---|
| M1 | ||
| M2 | ||
| 对角矩阵, |
表1 反应网络结构化矩阵的信息
Table 1 Information in the structured matrices of reaction networks
| 矩阵名称 | 矩阵维度 | 矩阵元素含义 |
|---|---|---|
| M1 | ||
| M2 | ||
| 对角矩阵, |
| 序号 | 反应 温度/℃ | 反应压力/MPa | 质量空速/h-1 | 进料量/(g/h) | 催化剂 种类 |
|---|---|---|---|---|---|
| 1 | 482 | 0.6 | 1.94 | 293 | 1 |
| 2 | 487 | 0.6 | 1.94 | 293 | 1 |
| 3 | 492 | 0.6 | 1.94 | 293 | 1 |
| 4 | 497 | 0.6 | 1.94 | 293 | 1 |
| 5 | 502 | 0.6 | 1.94 | 293 | 1 |
| 6 | 497 | 0.4 | 1.94 | 293 | 2 |
| 7 | 497 | 0.5 | 1.94 | 293 | 2 |
| 8 | 497 | 0.6 | 1.94 | 293 | 2 |
| 9 | 497 | 0.7 | 1.94 | 293 | 2 |
| 10 | 497 | 0.8 | 1.94 | 293 | 2 |
表2 实验操作条件
Table 2 Experimental operating conditions
| 序号 | 反应 温度/℃ | 反应压力/MPa | 质量空速/h-1 | 进料量/(g/h) | 催化剂 种类 |
|---|---|---|---|---|---|
| 1 | 482 | 0.6 | 1.94 | 293 | 1 |
| 2 | 487 | 0.6 | 1.94 | 293 | 1 |
| 3 | 492 | 0.6 | 1.94 | 293 | 1 |
| 4 | 497 | 0.6 | 1.94 | 293 | 1 |
| 5 | 502 | 0.6 | 1.94 | 293 | 1 |
| 6 | 497 | 0.4 | 1.94 | 293 | 2 |
| 7 | 497 | 0.5 | 1.94 | 293 | 2 |
| 8 | 497 | 0.6 | 1.94 | 293 | 2 |
| 9 | 497 | 0.7 | 1.94 | 293 | 2 |
| 10 | 497 | 0.8 | 1.94 | 293 | 2 |
| [1] | Shakor Z M, AbdulRazak A A, Sukkar K A. A detailed reaction kinetic model of heavy naphtha reforming[J]. Arabian Journal for Science and Engineering, 2020, 45(9): 7361-7370. |
| [2] | Iranshahi D, Karimi M, Amiri S, et al. Modeling of naphtha reforming unit applying detailed description of kinetic in continuous catalytic regeneration process[J]. Chemical Engineering Research and Design, 2014, 92(9): 1704-1727. |
| [3] | Hou W F, Su H Y, Hu Y Y, et al. Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen plus platform[J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 584-591. |
| [4] | Jiang H B, Sun Y, Jiang S B, et al. Reactor model of counter-current continuous catalyst-regenerative reforming process toward real time optimization[J]. Energy & Fuels, 2021, 35(13): 10770-10785. |
| [5] | Froment G F. Single event kinetic modeling of complex catalytic processes[J]. Catalysis Reviews, 2005, 47(1): 83-124. |
| [6] | Froment G F. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes[J]. Reviews in Chemical Engineering, 2013, 29(6): 385-412. |
| [7] | 周齐宏, 胡山鹰, 李有润, 等. 催化重整过程的分子模拟与优化[J]. 计算机与应用化学, 2004, 21(3): 447-452. |
| Zhou Q H, Hu S Y, Li Y R, et al. Molecular modelling and optimisation for catalytic reforming[J]. Computers and Applied Chemistry, 2004, 21(3): 447-452. | |
| [8] | 王睿通, 刘纪昌, 仲从伟, 等. 基于结构导向集总的催化重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2020, 36(1): 95-105. |
| Wang R T, Liu J C, Zhong C W, et al. Reaction kinetic model for catalytic reforming based on structure oriented lumping[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 95-105. | |
| [9] | Smith R. Kinetic analysis of naphtha reforming with platinum catalyst[J]. Chemical Engineering Progress, 1959, 55: 76-80. |
| [10] | Krane H G, Groh A B, Schulman B L, et al. Reactions in catalytic reforming of naphthas[C]//World Petroleum Congress Proceedings. New York, USA, 1959: 39-53. |
| [11] | Henningsen J, Bundgaard-Nielson M. Catalytic reforming[J]. British Chemical Engineering, 1970, 15(11): 1433-1436. |
| [12] | Ali S A, Alshareef A H, Theravalappil R, et al. Molecular kinetic modeling of catalytic naphtha reforming: a review of complexities and solutions[J]. Catalysis Reviews, 2023, 65(4): 1358-1411. |
| [13] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
| Wang Z Z, Suo H S, Zhao X L. Research and construction of digital twin intelligent ethylene plant[J]. CIESC Journal, 2023, 74(3): 1175-1186. | |
| [14] | 常斐, 师人博, 刘士花, 等. 石化行业产品生命周期碳足迹评价研究现状及展望[J]. 化工学报, 2025, 76(2): 419-437. |
| Chang F, Shi R B, Liu S H, et al. Product life cycle carbon footprint evaluation for petrochemical industry[J]. CIESC Journal, 2025, 76(2): 419-437. | |
| [15] | Wei W, Bennett C A, Tanaka R, et al. Computer aided kinetic modeling with KMT and KME[J]. Fuel Processing Technology, 2008, 89(4): 350-363. |
| [16] | Wei W, Bennett C A, Tanaka R, et al. Detailed kinetic models for catalytic reforming[J]. Fuel Processing Technology, 2008, 89(4): 344-349. |
| [17] | Klein M T. Software tools for molecular-level kinetic modeling of refinery and petrochemical reactors[C]//26th Annual Saudi-Japan Symposium on Technology in Petroleum Refining & Petrochemicals. Dhahran, Saudi Arabia, 2016. |
| [18] | Zhou X, Hou Z, Wang J G, et al. Molecular-level kinetic model for C12 continuous catalytic reforming[J]. Energy & Fuels, 2018, 32(6): 7078-7085. |
| [19] | 姚宏哲, 黄飞宇, 杨松, 等. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655. |
| Yao H Z, Huang F Y, Yang S, et al. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil[J]. CIESC Journal, 2024, 75(7): 2644-2655. | |
| [20] | 张霖宙, 陈政宇, 吕文进, 等. 石油加工分子管理平台构建[J]. 中国科学: 化学, 2018, 48(4): 411-426. |
| Zhang L Z, Chen Z Y, Lyu W J, et al. Development of petroleum refining molecular management modeling platform[J]. Scientia Sinica (Chimica), 2018, 48(4): 411-426. | |
| [21] | 王永春. 催化重整分子尺度反应动力学模型构建[D]. 北京: 中国石油大学(北京), 2022. |
| Wang Y C. Development of molecular-level kinetic model and reactor model for reforming[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| [22] | Wu J, Chen G X, Chen A Q, et al. Molecular-level modeling of naphtha continuous catalytic reforming process[J]. Chemical Engineering Science, 2025, 309: 121430. |
| [23] | Bi K X, Chen T J, Qiu T, et al. Reaction network simplification and key routes extraction for steam cracking process[J]. Fuel, 2023, 352: 129030. |
| [24] | Lu T F, Law C K. On the applicability of directed relation graphs to the reduction of reaction mechanisms[J]. Combustion and Flame, 2006, 146(3): 472-483. |
| [25] | Pepiot-Desjardins P, Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms[J]. Combustion and Flame, 2008, 154(1/2): 67-81. |
| [26] | Quann R J, Jaffe S B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1993, 31(11): 2483-2497. |
| [27] | Quann R J, Jaffe S B. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science, 1996, 51(10): 1615-1635. |
| [28] | Quann R J. Modeling the chemistry of complex petroleum mixtures[J]. Environmental Health Perspectives, 1998, 106(): 1441-1448. |
| [29] | Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia Piscataway, NJ: IEEE, 1995: 1942-1948. |
| [30] | Wu Y W, Zhang N. Molecular characterization of gasoline and diesel streams[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12773-12782. |
| [31] | Meyers R A. Handbook of Petroleum Refining Processes[M]. 3rd ed. New York: McGraw-Hill Education, 2003. |
| [32] | Sinfelt J H, Hurwitz H, Rohrer J C. Kinetics of n-pentane isomerization over Pt-Al2O3 catalyst[J]. The Journal of Physical Chemistry, 1960, 64(7): 892-894. |
| [33] | Mills G A, Heinemann H, Milliken T H, et al. (houdriforming reactions) catalytic mechanism[J]. Industrial & Engineering Chemistry, 1953, 45(1): 134-137. |
| [34] | 天津大学物理化学教研室. 物理化学-下册[M]. 3版. 北京: 高等教育出版社, 1993: 263-273. |
| Physical Chemistry Teaching and Research Office of Tianjin university. Physical Chemistry-volume Ⅱ[M]. 3rd ed. Beijing: Higher Education Press, 1993: 263-273. | |
| [35] | Watson B A, Klein M T, Harding R H. Catalytic cracking of alkylbenzenes: modeling the reaction pathways and mechanisms[J]. Applied Catalysis A: General, 1997, 160(1): 13-39. |
| [36] | Marrero J, Gani R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183/184: 183-208. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [6] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [7] | 蒋智洪, 雷骞, 朱引军, 雷志刚, 陈洪林. 三聚甲醛体系物性模型和提浓工艺研究[J]. 化工学报, 2025, 76(9): 4872-4881. |
| [8] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [9] | 李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577. |
| [10] | 黄正宗, 刘科成, 李泽方, 曾平生, 刘永富, 闫红杰, 刘柳. 锌精馏炉砖砌式换热室数值模拟与场协同优化[J]. 化工学报, 2025, 76(9): 4425-4439. |
| [11] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [12] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [13] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [14] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [15] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号