化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4723-4736.DOI: 10.11949/0438-1157.20250185
收稿日期:2025-02-26
修回日期:2025-04-02
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
冯英楠
作者简介:王钰(2000—),女,硕士研究生, 707531233@qq.com
基金资助:
Yu WANG(
), Yingnan FENG(
), Tao WANG, Zhiping ZHAO
Received:2025-02-26
Revised:2025-04-02
Online:2025-09-25
Published:2025-10-23
Contact:
Yingnan FENG
摘要:
人口的增长和工业化进程的推进使工业废液的无害化处理及资源化利用成为当今社会面临的重大挑战。纳滤技术作为一项绿色高效、环境友好的膜分离技术,在工业废液处理领域展现出巨大的应用潜力。然而,传统纳滤膜在实际应用中普遍受到选择性与渗透性之间的“trade-off”效应以及膜污染问题的制约。近年来,将具有优异物理化学性质的纳米材料引入纳滤膜中,为解决上述问题提供了新的思路。本文综述了用于纳米复合膜制备的纳米材料,重点聚焦于原位生长在纳滤膜中构筑纳米分离层或功能层中的应用,详细阐述了其制备策略、结构调控机制及性能优化机制,并介绍了所制备的纳米复合纳滤膜在工业废液处理中的应用进展,以期为高性能复合纳滤膜的设计与制备提供理论指导和技术参考,推动该领域的技术创新与工业应用。
中图分类号:
王钰, 冯英楠, 王涛, 赵之平. 原位生长构筑纳米复合纳滤膜:膜制备与应用[J]. 化工学报, 2025, 76(9): 4723-4736.
Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application[J]. CIESC Journal, 2025, 76(9): 4723-4736.
图4 膜的制备和结构: (a) 协同原位MOF生长法制膜工艺示意图; PES基膜 (b)、Co2+@PPN (c) 和ZIF-67@PPN1膜 (d) 的表面扫描电镜图像; PES基膜 (e)、Co2+@PPN (f) 和ZIF-67@PPN1膜 (g) 的横截面扫描电镜图像[38]
Fig.4 Formation and structure of the membranes: (a) Schematic illustration of membrane fabrication process by synergistic in-situ MOF growth method; Surface SEM images of PES substrate (b), Co2+@PPN (c) and ZIF-67@PPN1 membranes (d); Cross-section SEM images of PES substrate (e), Co2+@PPN (f) and ZIF-67@PPN1 membranes (g)[38]
| 膜应用场景 | 纳米材料 | 溶剂 | 分离性能(通量/选择性) | 文献 |
|---|---|---|---|---|
| 纳滤 | GO/Co(OH)2纳米片 | 水 | 17.0 L·m-2·h-1/ | [ |
| 有机溶剂纳滤 | HKUST-1 | 丙酮 | 80 L·m-2·h-1·bar-1/MWCO=794 | [ |
| ZIF-8 | 异丙醇 | 272 L·m-2·h-1·bar-1/R刚果红=99% | [ | |
| MoS2 | 甲醇 | 40.3 L·m-2·h-1·bar-1/R伊文思蓝=98.1% | [ | |
| MoS2 | 甲醇 | 52.2 L·m-2·h-1·bar-1/R铬黑T>97% | [ | |
| α-Co(OH)2纳米片 | 甲醇 | 127 L·m-2·h-1·bar-1/R铬黑T=96% | [ | |
| 聚苯胺 | 乙醇 | 14.9 L·m-2·h-1·bar-1/R孟加拉红=98.1% | [ | |
| COF | 乙醇 | 98.4 L·m-2·h-1·bar-1/MWCO=784 | [ | |
| 疏松纳滤 | ZIF-67 | 水 | 45.68 L·m-2·h-1·bar-1/R刚果红=99.98% | [ |
| ZIF-8 | 水 | 45 L·m-2·h-1·bar-1/R铬黑T=99% | [ | |
| COF | 水 | 282 L·m-2·h-1·bar-1/R刚果红=99.8% | [ | |
| COF-300 | 水 | 79.1 L·m-2·h-1·bar-1/R铬黑T=99.4% | [ | |
| GO | 水 | 493.9 L·m-2·h-1·bar-1/R刚果红>99% | [ | |
| 层状双氢氧化合物 | 水 | 19.8 L·m-2·h-1·bar-1/R甲基蓝=97.9% | [ | |
| 共价三嗪框架 | 水 | 44.8 L·m-2·h-1·bar-1/R铬黑T>97% | [ |
表1 原位生长法制备纳米分离层复合纳滤膜分离性能对比
Table 1 Separation performance comparison of composite NF membranes with nanomaterial separation layers fabricated viain-situ growth
| 膜应用场景 | 纳米材料 | 溶剂 | 分离性能(通量/选择性) | 文献 |
|---|---|---|---|---|
| 纳滤 | GO/Co(OH)2纳米片 | 水 | 17.0 L·m-2·h-1/ | [ |
| 有机溶剂纳滤 | HKUST-1 | 丙酮 | 80 L·m-2·h-1·bar-1/MWCO=794 | [ |
| ZIF-8 | 异丙醇 | 272 L·m-2·h-1·bar-1/R刚果红=99% | [ | |
| MoS2 | 甲醇 | 40.3 L·m-2·h-1·bar-1/R伊文思蓝=98.1% | [ | |
| MoS2 | 甲醇 | 52.2 L·m-2·h-1·bar-1/R铬黑T>97% | [ | |
| α-Co(OH)2纳米片 | 甲醇 | 127 L·m-2·h-1·bar-1/R铬黑T=96% | [ | |
| 聚苯胺 | 乙醇 | 14.9 L·m-2·h-1·bar-1/R孟加拉红=98.1% | [ | |
| COF | 乙醇 | 98.4 L·m-2·h-1·bar-1/MWCO=784 | [ | |
| 疏松纳滤 | ZIF-67 | 水 | 45.68 L·m-2·h-1·bar-1/R刚果红=99.98% | [ |
| ZIF-8 | 水 | 45 L·m-2·h-1·bar-1/R铬黑T=99% | [ | |
| COF | 水 | 282 L·m-2·h-1·bar-1/R刚果红=99.8% | [ | |
| COF-300 | 水 | 79.1 L·m-2·h-1·bar-1/R铬黑T=99.4% | [ | |
| GO | 水 | 493.9 L·m-2·h-1·bar-1/R刚果红>99% | [ | |
| 层状双氢氧化合物 | 水 | 19.8 L·m-2·h-1·bar-1/R甲基蓝=97.9% | [ | |
| 共价三嗪框架 | 水 | 44.8 L·m-2·h-1·bar-1/R铬黑T>97% | [ |
图5 膜制备示意图:ZIF-8合成(a)、LBL制备工艺(b),PA/ZIF-8(LBL)膜的横截面结构(c)[65]
Fig.5 Schematic of membrane fabrication: ZIF-8 synthesis (a), LBL fabrication procedures (b), and cross-sectional structure of the PA/ZIF-8 (LBL) membrane (c)[65]
图7 所制备的膜的表面和横截面的扫描电镜图像及膜的水渗透性和盐截留率[66]
Fig.7 SEM images of the top surfaces and cross sections of prepared membranes and water permeability and salt rejection[66]
| 膜应用场景 | 纳米材料 | 溶剂 | 分离性能(通量/选择性) | 文献 |
|---|---|---|---|---|
| 纳滤 | ZIF-8 | 水 | 9 L·m-2·h-1·bar-1/R刚果红>99.8% | [ |
| ZIF-8 | 水 | 29.4 L·m-2·h-1·bar-1/ | [ | |
| UiO-66-NH2 | 水 | 11.55 L·m-2·h-1·bar-1/ | [ | |
| CD-MOF | 水 | 29.4 L·m-2·h-1·bar-1/ | [ | |
| ZIF-8 | 水 | 31.4 L·m-2·h-1·bar-1/ | [ | |
| 有机溶剂纳滤 | Cu-TCPP | 乙醇 | 1.93 L·m-2·h-1·bar-1/R刚果红>99.3% | [ |
| HKUST-1 | 甲醇 | 9.59 L·m-2·h-1·bar-1/R亮蓝G250=98.8% | [ | |
| 疏松纳滤 | TiO2 | 水 | 65.0 L·m-2·h-1·bar-1/R刚果红>95% | [ |
| ZnO | 水 | 375 L·m-2·h-1·bar-1/R刚果红>91% | [ | |
| Zn-IL | 水 | 26.5 L·m-2·h-1·bar-1/R甲基蓝=99% | [ | |
| ZnO | 水 | 21 L·m-2·h-1·bar-1/R双氯芬酸钠>90% | [ |
表2 原位生长法构建纳米中间层所制纳米复合膜分离性能对比
Table 2 Separation performance comparison of composite NF membranes with nanomaterial interlayers fabricated by in-situ growth
| 膜应用场景 | 纳米材料 | 溶剂 | 分离性能(通量/选择性) | 文献 |
|---|---|---|---|---|
| 纳滤 | ZIF-8 | 水 | 9 L·m-2·h-1·bar-1/R刚果红>99.8% | [ |
| ZIF-8 | 水 | 29.4 L·m-2·h-1·bar-1/ | [ | |
| UiO-66-NH2 | 水 | 11.55 L·m-2·h-1·bar-1/ | [ | |
| CD-MOF | 水 | 29.4 L·m-2·h-1·bar-1/ | [ | |
| ZIF-8 | 水 | 31.4 L·m-2·h-1·bar-1/ | [ | |
| 有机溶剂纳滤 | Cu-TCPP | 乙醇 | 1.93 L·m-2·h-1·bar-1/R刚果红>99.3% | [ |
| HKUST-1 | 甲醇 | 9.59 L·m-2·h-1·bar-1/R亮蓝G250=98.8% | [ | |
| 疏松纳滤 | TiO2 | 水 | 65.0 L·m-2·h-1·bar-1/R刚果红>95% | [ |
| ZnO | 水 | 375 L·m-2·h-1·bar-1/R刚果红>91% | [ | |
| Zn-IL | 水 | 26.5 L·m-2·h-1·bar-1/R甲基蓝=99% | [ | |
| ZnO | 水 | 21 L·m-2·h-1·bar-1/R双氯芬酸钠>90% | [ |
| [1] | Ahmed A A, Sayed S, Abdoulhalik A, et al. Applications of machine learning to water resources management: a review of present status and future opportunities[J]. Journal of Cleaner Production, 2024, 441: 140715. |
| [2] | Salehi M. Global water shortage and potable water safety: today's concern and tomorrow's crisis[J]. Environment International, 2022, 158: 106936. |
| [3] | Sirkar K K. Membrane separation technologies: current developments[J]. Chemical Engineering Communications, 1997, 157(1): 145-184. |
| [4] | Jiang Z Y, Chu L Y, Wu X M, et al. Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China[J]. Reviews in Chemical Engineering, 2019, 36(1): 67-105. |
| [5] | Dong H, Zhao L, Zhang L, et al. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination[J]. Journal of Membrane Science, 2015, 476: 373-383. |
| [6] | Shi Q H, Zhang N, Wang D, et al. Polyethylenimine-mica nanosheets/cellulose nanofibers stacked loose nanofiltration membrane for effective dye/salt separation[J]. Desalination, 2023, 551: 116410. |
| [7] | Li Q, Sun W G, Shang B, et al. Lignin/mesoporous hollow silica nanosphere thin film nanocomposite loose nanofiltration membrane for dye/salt separation[J]. Desalination, 2024, 575: 117332. |
| [8] | Shi Z, Wang Z, Wang C, et al. Research progress in the preparation of organic nanofiltration membranes for dye separation[J]. Membrane Science and Technology, 2020, 40(1): 340-351. |
| [9] | Tang C Y, Chong T H, Fane A G. Colloidal interactions and fouling of NF and RO membranes: a review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 126-143. |
| [10] | Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. |
| [11] | Sun J Q, Wang Y X, Dong R R, et al. Review of the recent six-year chlorination resistance strategies of polyamide reverse osmosis and nanofiltration membrane[J]. Desalination, 2025, 601: 118540. |
| [12] | Zhu J Y, Tian M M, Zhang Y T, et al. Fabrication of a novel "loose" nanofiltration membrane by facile blending with Chitosan-Montmorillonite nanosheets for dyes purification[J]. Chemical Engineering Journal, 2015, 265: 184-193. |
| [13] | Lin J Y, Ye W Y, Zeng H M, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. Journal of Membrane Science, 2015, 477: 183-193. |
| [14] | Srimuk P, Su X, Yoon J, et al. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements[J]. Nature Reviews Materials, 2020, 5: 517-538. |
| [15] | Ma G Q, Zhao S, Wang Y, et al. Conjugated polyaniline derivative membranes enable ultrafast nanofiltration and organic-solvent nanofiltration[J]. Journal of Membrane Science, 2022, 645: 120241. |
| [16] | Rathod S, Preetam S, Pandey C, et al. Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment[J]. Biotechnology Reports, 2024, 41: e00830. |
| [17] | Lai W F, He Z D. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery[J]. Journal of Controlled Release, 2016, 243: 269-282. |
| [18] | 苑蕾, 张静玉, 刘海燕. 纳米材料的合成与应用研究进展[J]. 山东化工, 2020, 49(20): 46-47. |
| Yuan L, Zhang J Y, Liu H Y. Progress in synthesis and application of nanomaterials[J]. Shandong Chemical Industry, 2020, 49(20): 46-47. | |
| [19] | Yang Z, Guo H, Yao Z K, et al. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes[J]. Environmental Science & Technology, 2019, 53(9): 5301-5308. |
| [20] | Choi Y, Kang J, Choi E, et al. Carbon nanotube-supported graphene oxide nanoribbon bilayer membrane for high-performance diafiltration[J]. Chemical Engineering Journal, 2022, 427: 131805. |
| [21] | Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279. |
| [22] | Pomerantseva E, Bonaccorso F, Feng X L, et al. Energy storage: the future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285. |
| [23] | Poornima S, Manikandan S, Karthik V, et al. Emerging nanotechnology based advanced techniques for wastewater treatment[J]. Chemosphere, 2022, 303: 135050. |
| [24] | Zhang Y T, Song Q Q, Liang X, et al. High-flux, high-selectivity loose nanofiltration membrane mixed with zwitterionic functionalized silica for dye/salt separation[J]. Applied Surface Science, 2020, 515: 146005. |
| [25] | 生瑜, 朱德钦, 陈建定. 聚合物基无机纳米复合材料的制备方法 ( Ⅰ ): 原位生成法[J]. 高分子通报, 2001(4): 9-14, 23. |
| Sheng Y, Zhu D Q, Chen J D. Preparation strategy of polymer-based nanocomposite[J]. Polymer Bulletin, 2001(4): 9-14, 23. | |
| [26] | Li G L, Liu Y, Shi K, et al. Highly loaded Prussian blue mixed matrix membrane for salt-tolerant solar catalytic oxidation[J]. Journal of Membrane Science, 2025, 721: 123820. |
| [27] | Yao A Y, Hua D, Hong Y P, et al. Using Cu-TCPP nanosheets as interlayers for high-performance organic solvent nanofiltration membranes[J]. ACS Applied Nano Materials, 2022, 5(12): 18718-18729. |
| [28] | Wang L, Zhang M, Shu Y F, et al. Precisely regulated in-plane pore sizes of Co-MOF nanosheet membranes for efficient dye recovery[J]. Desalination, 2023, 567: 116979. |
| [29] | Zheng X, Wang T, Li S H, et al. Reticulated polyamide thin-film nanocomposite membranes incorporated with 2D boron nitride nanosheets for high-performance nanofiltration[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28606-28617. |
| [30] | Gangu K K, Maddila S, Mukkamala S B, et al. A review on contemporary metal–organic framework materials[J]. Inorganica Chimica Acta, 2016, 446: 61-74. |
| [31] | Nazir M A, Ullah S, Shahid M U, et al. Zeolitic imidazolate frameworks (ZIF-8 & ZIF-67): synthesis and application for wastewater treatment[J]. Separation and Purification Technology, 2025, 356: 129828. |
| [32] | Ma J X, Chen Z M, Diao Y Y, et al. Current and promising applications of UiO-based MOFs in breast cancer therapy[J]. Reactive and Functional Polymers, 2024, 200: 105918. |
| [33] | Zhao Y J, Gu H, Zhou Y L, et al. COF-based membranes for liquid phase separation: preparation, mechanism and perspective[J]. Journal of Environmental Sciences, 2024, 141: 63-89. |
| [34] | Wang S F, Yang L X, He G W, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. |
| [35] | Campbell J, Davies R P, Braddock D C, et al. Improving the permeance of hybrid polymer/metal-organic framework (MOF) membranes for organic solvent nanofiltration (OSN) development of MOF thin films via interfacial synthesis[J]. Journal of Materials Chemistry A, 2015, 3(18): 9668-9674. |
| [36] | Campbell J, Da Silvao Burgal J, Szekely G, et al. Hybrid polymer/MOF membranes for organic solvent nanofiltration (OSN): chemical modification and the quest for perfection[J]. Journal of Membrane Science, 2016, 503: 166-176. |
| [37] | Wu S C, Chen Y, Yan X, et al. ZIF-8 channeled and coordination-bridging two-dimensional WS2 membrane for efficient organic solvent nanofiltration[J]. Chemical Engineering Journal, 2022, 442: 136139. |
| [38] | Soyekwo F, Mao X, Nie R X, et al. Protein-polyphenol nanoassemblies modulated construction of zeolitic imidazole framework-67 based nanofiltration membrane for effective separation of dye/salt mixtures[J]. Desalination, 2024, 581: 117532. |
| [39] | Ma K, Wang N X, Wang C C, et al. Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water[J]. Journal of Membrane Science, 2021, 632: 119352. |
| [40] | Zhang W H, Yin M J, Zhao Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3): 337-343. |
| [41] | He J, Zhang R, Chen D, et al. Self-cleaning of metal-organic framework membranes achieved by photocatalytic ZIFs for dye and antibiotic separation[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113363. |
| [42] | Zhao X K, Nie K H, Sun F Y, et al. Continuous flow combined with in situ self-assembly fabrication of high permselective ZIF-8@GO composite membrane in ceramic tube for organic dye nanofiltration[J]. Process Safety and Environmental Protection, 2024, 184: 1369-1378. |
| [43] | Zhang M Y, Wang X P, Lin R J, et al. Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal[J]. Journal of Membrane Science, 2021, 618: 118630. |
| [44] | Zhao Y, Tang K N, Liu H M, et al. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity[J]. Journal of Membrane Science, 2016, 520: 262-271. |
| [45] | Zhao Y, Wu M Y, Shen P X, et al. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium[J]. Journal of Membrane Science, 2021, 618: 118668. |
| [46] | Li Y B, Wee L H, Martens J A, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance[J]. Journal of Membrane Science, 2017, 523: 561-566. |
| [47] | Jia M M, Feng J H, Shao W, et al. In-situ interfacial synthesis of metal-organic framework/polyamide thin-film nanocomposite membranes with elevated nanofiltration performances[J]. Journal of Membrane Science, 2024, 694: 122418. |
| [48] | Li Q, Zhu Y Y, Pan T, et al. Covalent organic framework nanomaterials: syntheses, architectures, and applications[J]. Advances in Colloid and Interface Science, 2025, 339: 103427. |
| [49] | Rahbari-Sisakht M, Ismail A F. Covalent organic framework membranes for water purification: current status and future research directions[J]. Separation and Purification Technology, 2025, 359: 130759. |
| [50] | Kandambeth S, Biswal B P, Chaudhari H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, 29(2): 1603945. |
| [51] | Liu J T, Han G, Zhao D L, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation[J]. Science Advances, 2020, 6(41): eabb1110. |
| [52] | Yang F, Guo J, Han C Z, et al. Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration[J]. Science Advances, 2024, 10(50): eadr9260. |
| [53] | He Y S, Lin X G, Chen J H, et al. Homogeneous polymerization of self-standing covalent organic framework films with high performance in molecular separation[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41942-41949. |
| [54] | Wang Z, Si Z H, Cai D, et al. Synthesis of stable COF-300 nanofiltration membrane via in situ growth with ultrahigh flux for selective dye separation[J]. Journal of Membrane Science, 2020, 615: 118466. |
| [55] | Du J C, Yao A Y, Sun Q, et al. Ultrafast interfacial self-assembly toward bioderived polyester COF membranes with microstructure optimization[J]. Advanced Materials, 2024, 36(32): 2405744. |
| [56] | Liu T T, Qin Z P, Liu Q H, et al. In situ growth of a tubular MoS2 membrane on a ceramic tube with improved organic solvent nanofiltration performance[J]. Materials Chemistry Frontiers, 2021, 5(7): 3184-3191. |
| [57] | Liu Y, Li X J, Liu T T, et al. Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration[J]. Journal of Membrane Science, 2022, 659: 120777. |
| [58] | Dong Y P, Lin C, Gao S J, et al. Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection[J]. Journal of Membrane Science, 2020, 607: 118184. |
| [59] | Liu H X, Zhao C, Wang N X, et al. Nanosheet α-Co(OH)2 composite membranes with ultrathin separation layer for removing dyes from solvent with high flux[J]. Separation and Purification Technology, 2018, 207: 506-513. |
| [60] | He P P, Zhao S, Mao C Y, et al. In-situ growth of double-layered polyaniline composite membrane for organic solvent nanofiltration[J]. Chemical Engineering Journal, 2021, 420: 129338. |
| [61] | Gao Z F, Liu J T, Chung T S. Rapid in situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration[J]. Separation and Purification Technology, 2022, 294: 121166. |
| [62] | Long Q W, Chen L W, Zong Y X, et al. Photocatalytically self-cleaning graphene oxide nanofiltration membranes reinforced with bismuth oxybromide for high-performance water purification[J]. Journal of Colloid and Interface Science, 2024, 675: 958-969. |
| [63] | Zhao S, Zhu H T, Wang Z, et al. A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment[J]. Chemical Engineering Journal, 2018, 353: 460-471. |
| [64] | Wang X Q, Wang N X, Ni H X, et al. In situ growth of covalent triazine frameworks membrane on alumina substrate for dye/salt separation[J]. Separation and Purification Technology, 2022, 280: 119930. |
| [65] | Wang L Y, Fang M Q, Liu J, et al. Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24082-24093. |
| [66] | Wu X N, Yang L, Meng F B, et al. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: importance of particle deposition methods on structure and performance[J]. Journal of Membrane Science, 2021, 632: 119356. |
| [67] | Lei Y T, Zhu L J, Xu J L, et al. The metal organic framework of UiO-66-NH2 reinforced nanofiltration membrane for highly efficient ion sieving[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111222. |
| [68] | Yao A Y, Hua D, Gao Z F, et al. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer[J]. Journal of Membrane Science, 2022, 652: 120465. |
| [69] | Zhang Q, Fan L, Yang Z, et al. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles[J]. Applied Surface Science, 2017, 410: 494-504. |
| [70] | Liu Y T, Mo J H, Ding H Y, et al. Ultrafast loose nanofiltration membrane intercalated by in situ grown nanoparticles for dye purification and reuse[J]. Desalination, 2023, 551: 116439. |
| [71] | Yu J, Zhang L, Shen L G, et al. In situ grown cyclodextrin metal-organic framework nanoparticles templated stripe nano-wrinkled polyamide nanofiltration membranes for efficient desalination and antibiotic removal[J]. Journal of Membrane Science, 2024, 694: 122413. |
| [72] | Ni L H, Li M, Guo X, et al. Macrocyclic polyamines mediated in situ growth of MOFs for the high permeance of nanofiltration membranes[J]. Journal of Membrane Science, 2024, 709: 123149. |
| [73] | Chen K, Li P, Zhang H Y, et al. Organic solvent nanofiltration membrane with improved permeability by in-situ growth of metal-organic frameworks interlayer on the surface of polyimide substrate[J]. Separation and Purification Technology, 2020, 251: 117387. |
| [74] | Bai J, Gong L L, Xiao L Q, et al. Interface-confined channels facilitating water transport through an IL-enriched nanocomposite membrane[J]. ACS Applied Materials & Interfaces, 2022, 14(47): 53390-53397. |
| [75] | Liu Y T, Chen Y Y, Ding H Y, et al. Enhancing PPCP and salt separation in polyamide nanofiltration membranes with polydopamine and ZnO functionalized nanofiber support[J]. Journal of Membrane Science, 2025, 716: 123525. |
| [1] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [2] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [3] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [4] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [5] | 张荟钦, 赵泓竣, 付正军, 庄力, 董凯, 贾添智, 曹雪丽, 孙世鹏. 纳滤膜在离子型稀土浸出液提浓中的应用研究[J]. 化工学报, 2025, 76(8): 4095-4107. |
| [6] | 吴阿强, 诸葛祥群, 刘通, 王明星, 罗鲲. 纳米普鲁士蓝悬浮电解液对锂氧电池性能的影响[J]. 化工学报, 2025, 76(8): 4310-4317. |
| [7] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [8] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [9] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [10] | 孙国庆, 李海波, 丁志阳, 郭文辉, 徐浩, 赵艳侠. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| [11] | 高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360. |
| [12] | 蒋敏, 邵翔宇, 郑立刚, 高建良, 雷刚. 膜片压力对氢-空气混合气体泄爆过程的影响[J]. 化工学报, 2025, 76(6): 2770-2780. |
| [13] | 孙文浩, 田君, 张锟, 刘娜, 曹宝森, 梁晓嫱. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| [14] | 何昌秋, 田加猛, 陈义齐, 朱宇琛, 刘鑫, 王海, 王贞涛, 王军锋, 周致富, 陈斌. 电场-宏观结构表面协同强化薄液膜沸腾传热特性[J]. 化工学报, 2025, 76(6): 2589-2602. |
| [15] | 彭健, 沈鲁恺, 王立坤, 忻利宏, 刘涌, 赵高凌, 马赛男, 韩高荣. 钨酸盐纳米材料的制备及其在电致变色领域的研究进展[J]. 化工学报, 2025, 76(6): 2451-2468. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号