化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2589-2602.DOI: 10.11949/0438-1157.20241233
何昌秋1(
), 田加猛1(
), 陈义齐1, 朱宇琛1, 刘鑫1, 王海1, 王贞涛1, 王军锋2, 周致富3, 陈斌3
收稿日期:2024-11-01
修回日期:2025-01-02
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
田加猛
作者简介:何昌秋(1999—),男,硕士研究生,354422874@qq.com
基金资助:
Changqiu HE1(
), Jiameng TIAN1(
), Yiqi CHEN1, Yuchen ZHU1, Xin LIU1, Hai WANG1, Zhentao WANG1, Junfeng WANG2, Zhifu ZHOU3, Bin CHEN3
Received:2024-11-01
Revised:2025-01-02
Online:2025-06-25
Published:2025-07-09
Contact:
Jiameng TIAN
摘要:
利用电场与宏观结构协同强化薄液膜沸腾传热,有望突破电子器件高热通量散热瓶颈。以乙醇为工质,设计并加工了6种宏观结构表面,通过高速摄像可视化和沸腾传热测量,系统分析了液膜厚度、结构参数以及荷电电压对薄液膜沸腾传热特性的影响规律。实验结果表明,气泡动力学特性调控是临界热通量(CHF)增强的关键。与不施加电场相比,施加4 kV荷电电压时,宏观结构表面的气泡脱离频率最高可提升80%,气泡脱离直径减小了28%,从而使CHF提升了20%。CHF随着液膜厚度和肋高的增大而增大,随肋间距的增大而减小。在最优条件下,CHF提升幅值可达139%。通过定义CHF增强比发现,液膜厚度对CHF的提升贡献最大(0.37),其次是肋间距(0.24)和荷电电压(0.20)。
中图分类号:
何昌秋, 田加猛, 陈义齐, 朱宇琛, 刘鑫, 王海, 王贞涛, 王军锋, 周致富, 陈斌. 电场-宏观结构表面协同强化薄液膜沸腾传热特性[J]. 化工学报, 2025, 76(6): 2589-2602.
Changqiu HE, Jiameng TIAN, Yiqi CHEN, Yuchen ZHU, Xin LIU, Hai WANG, Zhentao WANG, Junfeng WANG, Zhifu ZHOU, Bin CHEN. Synergistic heat transfer enhancement characteristics due to electric field and macro-structured surface during thin film boiling[J]. CIESC Journal, 2025, 76(6): 2589-2602.
| 物理性质 | 数值 |
|---|---|
| 密度/(g/cm3) | 0.79 |
| 热导率/(W/(m·K)) | 0.17 |
| 黏度/(mPa·s) | 1.1 |
| 表面张力/(N/m) | 21.97×10-3 |
| 电导率/(S/m) | 5.10×10-5 |
| 相对介电常数 | 25.30 |
表1 乙醇的物理性质(20℃,1 atm)[25-26]
Table 1 Physical properties of ethanol (20℃, 1 atm)[25-26]
| 物理性质 | 数值 |
|---|---|
| 密度/(g/cm3) | 0.79 |
| 热导率/(W/(m·K)) | 0.17 |
| 黏度/(mPa·s) | 1.1 |
| 表面张力/(N/m) | 21.97×10-3 |
| 电导率/(S/m) | 5.10×10-5 |
| 相对介电常数 | 25.30 |
| 表面类型 | 肋数/个 | 基底面积/mm2 | 结构面积/mm2 | 总面积Atot/mm2 |
|---|---|---|---|---|
| s2.5-h0.5 | 16 | 96 | 20 | 116 |
| s2.5-h1.5 | 16 | 96 | 52 | 148 |
| s2.5-h2.5 | 16 | 96 | 84 | 180 |
| s1.5-h0.5 | 36 | 91 | 45 | 136 |
| s1.5-h1.5 | 36 | 91 | 117 | 208 |
| s1.5-h2.5 | 36 | 91 | 189 | 280 |
表2 立方柱肋结构参数
Table 2 Cubic-pin-fin structural parameters
| 表面类型 | 肋数/个 | 基底面积/mm2 | 结构面积/mm2 | 总面积Atot/mm2 |
|---|---|---|---|---|
| s2.5-h0.5 | 16 | 96 | 20 | 116 |
| s2.5-h1.5 | 16 | 96 | 52 | 148 |
| s2.5-h2.5 | 16 | 96 | 84 | 180 |
| s1.5-h0.5 | 36 | 91 | 45 | 136 |
| s1.5-h1.5 | 36 | 91 | 117 | 208 |
| s1.5-h2.5 | 36 | 91 | 189 | 280 |
图7 电场作用下不同结构表面传热系数随壁面温度的变化
Fig.7 Variations of surface heat transfer coefficient with wall temperature on different structured surfaces under electrical field
| [1] | Kim J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. |
| [2] | Smakulski P, Pietrowicz S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646. |
| [3] | Xia Y K, Gao X, Li R. Management of surface cooling non-uniformity in spray cooling[J]. Applied Thermal Engineering, 2020, 180: 115819. |
| [4] | Silk E A, Kim J, Kiger K. Spray cooling of enhanced surfaces: impact of structured surface geometry and spray axis inclination[J]. International Journal of Heat and Mass Transfer, 2006, 49(25/26): 4910-4920. |
| [5] | Zhang W, Wang Z L. Heat transfer enhancement of spray cooling in straight-grooved surfaces in the non-boiling regime[J]. Experimental Thermal and Fluid Science, 2015, 69: 38-44. |
| [6] | Zhang Z, Jiang P X, Christopher D M, et al. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 80: 26-37. |
| [7] | Zhou F, Zhou J Z, Li X F, et al. Enhanced capillary-driven thin film boiling on cost-effective gradient wire meshes for high-heat-flux applications[J]. Experimental Thermal and Fluid Science, 2023, 149: 111018. |
| [8] | 王跃社, 周芳德, 本田博司. 基于微肋管的微沟槽表面薄液膜沸腾理论模型[J]. 工程热物理学报, 2004, 25(3): 445-447. |
| Wang Y S, Zhou F D, Honda H. Theoretical model of thin film evaporation heat transfer based on grooved surface of micro-fin tubes[J]. Journal of Engineering Thermophysics, 2004, 25(3): 445-447. | |
| [9] | Chen L, Jin F C, Li J H, et al. Hybrid model of thin film boiling: insights into the unique behavior and ultrahigh heat flux[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121702. |
| [10] | Feng X, Bryan J E. Application of electrohydrodynamic atomization to two-phase impingement heat transfer[J]. Journal of Heat Transfer, 2008, 130(7): 072202. |
| [11] | Xu H J, Wang J F, Tian J M, et al. Electrohydrodynamic disintegration of dielectric fluid blended with ethanol[J]. Physics of Fluids, 2021, 33(6): 062107. |
| [12] | Zhukov V I, Pavlenko A N. Heat transfer and critical phenomena during evaporation and boiling in a thin horizontal liquid layer at low pressures[J]. International Journal of Heat and Mass Transfer, 2018, 117: 978-990. |
| [13] | Yiapanis G, Christofferson A J, Plazzer M, et al. Molecular mechanism of stabilization of thin films for improved water evaporation protection[J]. Langmuir, 2013, 29(47): 14451-14459. |
| [14] | Yan C J, Ma H B. Analytical solutions of heat transfer and film thickness in thin-film evaporation[J]. Journal of Heat Transfer, 2013, 135(3): 031501. |
| [15] | Zhukov V I, Pavlenko A N, Shvetsov D A. The effect of pressure on heat transfer at evaporation/boiling in horizontal liquid layers of various heights on a microstructured surface produced by 3D laser printing[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120488. |
| [16] | Wen R F, Liu W, Ma X H, et al. Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer[J]. iScience, 2021, 24(6): 102531. |
| [17] | Liu B, Garivalis A I, Cao Z Z, et al. Effects of electric field on pool boiling heat transfer over microstructured surfaces under different liquid subcoolings[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122154. |
| [18] | Chang H Z, Liu B, Li Q, et al. Effects of electric field on pool boiling heat transfer over composite microstructured surfaces with microcavities on micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2023, 205: 123893. |
| [19] | Garivalis A I, Manfredini G, Saccone G, et al. Critical heat flux enhancement in microgravity conditions coupling microstructured surfaces and electrostatic field[J]. NPJ Microgravity, 2021, 7(1): 37. |
| [20] | Xu R N, Wang G Y, Jiang P X. Spray cooling on enhanced surfaces: a review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144(1): 010802. |
| [21] | Dixit A K, Kumar R, Das A K. Investigation of film boiling at a liquid-liquid contact[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123234. |
| [22] | Inbaoli A, Sujith Kumar C S, Jayaraj S. A review on techniques to alter the bubble dynamics in pool boiling[J]. Applied Thermal Engineering, 2022, 214: 118805. |
| [23] | Saneie N, Kulkarni V, Treska B, et al. Microbubble dynamics and heat transfer in boiling droplets[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121413. |
| [24] | Tian J M, Wang J F, Chen B. Numerical investigation on isolated moving charged droplet evaporation in electrostatic field with highly volatile R134a[C]//International Conference on Liquid Atomization and Spray Systems. 2021. |
| [25] | Gan Y H, Chen N G, Zheng X H, et al. Electric field and spraying characteristics of electrospray using concave ground electrode[J]. Journal of Electrostatics, 2022, 115: 103662. |
| [26] | Xu H J, Wang J F, Li B, et al. Effect of spray modes on electrospray cooling heat transfer of ethanol[J]. Applied Thermal Engineering, 2021, 189: 116757. |
| [27] | Tian J M, He C Q, Chen Y Q, et al. Experimental study on combined heat transfer enhancement due to macro-structured surface and electric field during electrospray cooling[J]. International Journal of Heat and Mass Transfer, 2024, 220: 125015. |
| [28] | Zhao X, Zhang H F, Zhang B, et al. Experimental investigation of the mechanism of isolated liquid film flow in spray cooling[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122904. |
| [29] | Kline S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
| [30] | Jia W C, Qiu H H. Experimental investigation of droplet dynamics and heat transfer in spray cooling[J]. Experimental Thermal and Fluid Science, 2003, 27(7): 829-838. |
| [31] | Pandey V, Biswas G, Dalal A. Effect of superheat and electric field on saturated film boiling[J]. Physics of Fluids, 2016, 28(5): 052102. |
| [32] | Patel D, Vengadesan S. Electrohydrodynamic effects on the bubble ascent in quiescent liquid using charge conservation approach[J]. Physics of Fluids, 2023, 35(11): 112104. |
| [33] | Ha J W, Yang S M. Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field[J]. Journal of Fluid Mechanics, 2000, 405: 131-156. |
| [34] | Wang S, Hernan B J, Chen C L. Towards enhanced bubble detachment within a thin liquid film by electrowetting with voltage modulation[J]. Physics of Fluids, 2018, 30(6): 062102. |
| [35] | Jiang M N, Wang Y, Liu F Y, et al. Inhibiting the Leidenfrost effect above 1000℃ for sustained thermal cooling[J]. Nature, 2022, 601(7894): 568-572. |
| [36] | Adamson A W. Physical Chemistry of Surfaces[M]. 2nd ed. New York: Interscience Publishers, 1967: 192-204. |
| [37] | Chen Y J, Guo J, Liu X L, et al. Experiment and prediction model study on pool boiling heat transfer of water in the electric field with periodically changing direction[J]. International Journal of Multiphase Flow, 2022, 150: 104027. |
| [38] | Patel V K, Seyed Yagoobi J. Combined dielectrophoretic and electrohydrodynamic conduction pumping for enhancement of liquid film flow boiling[J]. Journal of Heat Transfer, 2017, 139(6): 061502. |
| [39] | Liang G T, Mudawar I. Review of spray cooling(part 1): Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1174-1205. |
| [40] | Liang G T, Mudawar I. Review of spray cooling(part 2): High temperature boiling regimes and quenching applications[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1206-1222. |
| [1] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [2] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [7] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [8] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [9] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [10] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [11] | 朱先宇, 孙钱行, 周守军, 田永生, 孙钦鹏. 复合相变材料耦合微槽平板热管的电池热管理实验研究[J]. 化工学报, 2025, 76(6): 2652-2666. |
| [12] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [13] | 米晓天, 刘宏臣, 王克军, 唐文娜, 徐永伟, 杨梅. 微通道内两相吸收剂TETA/DEEA吸收CO2过程的传质研究[J]. 化工学报, 2025, 76(6): 2667-2677. |
| [14] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [15] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号