化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3197-3211.DOI: 10.11949/0438-1157.20241425

• 综述与专论 • 上一篇    下一篇

硅基负极材料的研究进展

孙国庆1(), 李海波2, 丁志阳3, 郭文辉3, 徐浩3, 赵艳侠1()   

  1. 1.济南大学水利与环境学院,山东 济南 250022
    2.闪速优科(深圳)新材料有限公司,广东 深圳 518000
    3.山东毓川源环保科技有限公司,山东 烟台 264003
  • 收稿日期:2024-12-09 修回日期:2025-02-19 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 赵艳侠
  • 作者简介:孙国庆(1999—),男,硕士研究生,1325097091@qq.com
  • 基金资助:
    山东省高等学校青创科技支持计划项目(2021KJ043);山东省泰山学者青年专家计划项目(tsqn202103080)

Research progress of silicon based anode materials

Guoqing SUN1(), Haibo LI2, Zhiyang DING3, Wenhui GUO3, Hao XU3, Yanxia ZHAO1()   

  1. 1.School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
    2.Shansuyouke (Shenzhen) New Materials Co. , Ltd. , Shenzhen 518000, Guangdong, China
    3.Shandong Yuchuanyuan Environmental Protection Technology Co. , Ltd. , Yantai 264003, Shandong, China
  • Received:2024-12-09 Revised:2025-02-19 Online:2025-07-25 Published:2025-08-13
  • Contact: Yanxia ZHAO

摘要:

近年来,随着新能源汽车的高速发展,对电池的比容量、循环效率以及安全性提出了更高的要求。硅基负极材料因超高理论比容量(4200 mAh/g)和丰富储量成为突破锂离子电池能量密度瓶颈的核心方向,但其产业化进程受制于锂化过程中>300%的体积膨胀及SEI膜动态破裂引发的结构失效。综述了国内外在硅材料与其他物质的材料制备、复合工艺、元素掺杂、结构设计、纳米化硅材料以及SEI膜研究等方面的前沿研究成果,并阐述了硅负极产业化方向的未来发展,为硅基负极的发展提供了重要参考。

关键词: 硅负极, 碳包覆, 电化学, 负极材料, SEI膜, 产业化

Abstract:

In recent years, the rapid development of new energy vehicles has imposed increasingly stringent requirements on batteries in terms of high specific capacity, long-term cycling stability, and operational safety. Si-based anode materials have become the core direction to break through the bottleneck of lithium-ion battery energy density due to their ultra-high theoretical specific capacity (4200 mAh/g) and abundant reserves, but their industrialization process is restricted by the volume expansion of >300% during the lithiation process and the structural failure caused by the dynamic rupture of the SEI film. This review systematically examines recent advancements in silicon-based anode technologies, encompassing innovative material synthesis approaches, advanced composite engineering, strategic element doping, nanostructural design optimization, and interfacial modification strategies targeting SEI stabilization. Furthermore, it critically analyzes emerging trends in industrial-scale manufacturing processes and proposes a multidisciplinary roadmap for overcoming existing technical barriers, thereby establishing a comprehensive framework to guide the development of next-generation high-performance silicon anodes. By integrating fundamental mechanistic insights with scalable engineering solutions, this work provides critical perspectives on balancing electrochemical performance enhancement with cost-effective production methodologies, ultimately advancing the commercialization of silicon-based anodes in high-energy-density energy storage systems.

Key words: silicon negative electrode, carbon capping, electrochemistry, anode materials, SEI membrane, industrialization

中图分类号: