化工学报

• •    

基于ANN-GA集成的ORC混合工质智能筛选与性能优化

李玲1(), 庄钰1(), 刘琳琳1, 王超2, 都健1   

  1. 1.大连理工大学化工学院,化工系统工程研究所,辽宁 大连 116024
    2.大连理工大学控制科学与工程学院,辽宁 大连 116024
  • 收稿日期:2025-10-09 修回日期:2025-11-15 出版日期:2025-11-24
  • 通讯作者: 庄钰
  • 作者简介:李玲(1999—),女,硕士研究生, lliling@mail.dlut.edu.cn

ANN-GA integrated framework for intelligent screening of ORC mixture working fluids and performance optimization

Ling LI1(), Yu ZHANG1(), Linlin LIU1, Chao WANG2, Jian DU1   

  1. 1.Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
    2.School of Control Sciences and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2025-10-09 Revised:2025-11-15 Online:2025-11-24
  • Contact: Yu ZHANG

摘要:

针对有机朗肯循环(ORC)混合工质筛选耗时长、热物性数据缺失等问题,提出一种基于人工神经网络(ANN)与遗传算法(GA)集成的数据驱动框架,用于ORC系统的快速性能评估与混合工质智能筛选。首先利用Aspen Plus建立严格的热力学模型,采用拉丁超立方采样生成5种纯工质及其二元混合物共1600组样本数据;随后在MATLAB中构建多层前馈ANN模型,实现热效率(η)与单位净功(Wnet)的高精度预测(R²≥0.999)。最后通过GA结合权重系数法,将多目标优化转化为单目标形式,确定最优工质与最佳操作参数。结果表明,当注重热效率时(w1≤0.6),R123/R601最优(η=12.76%);当注重净功时(w1>0.6),R601/R245fa最优(Wnet=61.4 kW),较纯工质提升约26%。该方法显著缩短优化周期,为ORC混合工质设计提供高效工具。

关键词: 有机朗肯循环, 混合工质, 智能筛选, 神经网络, 多目标优化, 计算机模拟, 优化设计

Abstract:

To overcome the challenges of time-consuming screening and incomplete thermophysical property data in selecting mixed working fluids for Organic Rankine Cycle (ORC) systems, this study proposes an integrated data-driven optimization framework combining Artificial Neural Networks (ANN) and Genetic Algorithms (GA). The objective is to enable rapid performance evaluation and intelligent selection of optimal mixed working fluids and operating parameters. A rigorous thermodynamic model of the ORC system was first established in Aspen Plus, and 1,600 datasets were generated using Latin Hypercube Sampling (LHS) for five pure fluids and their binary mixtures. Subsequently, dedicated multilayer feedforward ANN models were developed in MATLAB for each candidate fluid to predict thermal efficiency (η) and specific net work output (Wnet) with high accuracy (R² ≥0.999). The GA was then applied to perform multi-objective optimization, which was transformed into a single-objective form using the weighting coefficient method to determine the optimal working fluids and operating parameters. Results show that R123/R601 achieves a better thermal efficiency (12.76%) when prioritizing thermal efficiency (w1≤0.6), and when prioritizing net work output (w1>0.6), R601/R245fa becomes the optimal mixture, achieving 61.4 kW with a 26% increase than that of pure working fluids. The proposed ANN-GA integrated framework provides a fast, accurate, and generalizable approach for mixed working fluid optimization, effectively reducing the optimization time and offering a practical tool for future ORC system design.

Key words: ORC, mixture working fluid, intelligent screening, neural networks, multi-objective optimization, computer simulation, optimal design

中图分类号: