化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 426-434.DOI: 10.11949/0438-1157.20241370
• 能源和环境工程 • 上一篇
收稿日期:2024-11-27
修回日期:2024-12-10
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
孙国刚
作者简介:密晓光(1987—),男,博士研究生,高级工程师,mixg@cnooc.com.cn
Xiaoguang MI1,2(
), Guogang SUN1(
), Hao CHENG2, Xiaohui ZHANG2
Received:2024-11-27
Revised:2024-12-10
Online:2025-06-25
Published:2025-06-26
Contact:
Guogang SUN
摘要:
针对印刷电路板式换热器建立了三维分布参数模型,采用三维数组来描绘换热器芯体并划分控制单元,同时提出了一种基于向量矩阵的流路描述手段。将文献中提出的适用于印刷电路板式换热器天然气侧与水侧的换热及压降关联式应用于仿真模型中。建立了模型的控制方程,并开发了一种基于二分法的能量方程快速迭代算法。利用该算法,完成了某海上平台天然气压缩机后冷却器的性能仿真,成功获取了换热器的换热负荷、流路压降等关键参数。通过与现场生产数据的对比,验证了模型的计算精度。结果显示,基于该仿真模型计算的换热器平均换热误差低于5%,天然气侧的平均压降误差也小于10%。
中图分类号:
密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434.
Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler[J]. CIESC Journal, 2025, 76(S1): 426-434.
| 工质 | 关联式形式 | 适用范围 | 文献 |
|---|---|---|---|
| 天然气工质 | 2300<Re<5×106 0.5<Pr<2000 | [ | |
| Re>2300 | [ | ||
| 海水工质 | 0<Re<3000 0.66<Pr<1.41 | [ | |
| Re≤2300 | [ |
表1 流动传热关联式
Table 1 Correlation equation for fluid flow and heat transfer
| 工质 | 关联式形式 | 适用范围 | 文献 |
|---|---|---|---|
| 天然气工质 | 2300<Re<5×106 0.5<Pr<2000 | [ | |
| Re>2300 | [ | ||
| 海水工质 | 0<Re<3000 0.66<Pr<1.41 | [ | |
| Re≤2300 | [ |
| 项目 | 天然气侧 | 海水侧 |
|---|---|---|
| 板片规格 | 600 mm×180 mm×0.6 mm | 600 mm×180 mm×0.6 mm |
| 换热通道宽度 | 0.9 mm | 0.9 mm |
| 换热通道深度 | 0.8 mm | 0.4 mm |
| 换热通道间距 | 1.5 mm | 1.5 mm |
| 换热单元数 | 121个 | 121个 |
| 芯体换热面积 | 22.8 m2 | 19.3 m2 |
表2 天然气压缩机后冷却器结构参数
Table 2 Structural parameters of natural gas cooler
| 项目 | 天然气侧 | 海水侧 |
|---|---|---|
| 板片规格 | 600 mm×180 mm×0.6 mm | 600 mm×180 mm×0.6 mm |
| 换热通道宽度 | 0.9 mm | 0.9 mm |
| 换热通道深度 | 0.8 mm | 0.4 mm |
| 换热通道间距 | 1.5 mm | 1.5 mm |
| 换热单元数 | 121个 | 121个 |
| 芯体换热面积 | 22.8 m2 | 19.3 m2 |
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 21.00 | 18.7 | 41.1 | 4378.00 | 10.25 | 578.00 | 66.57 |
| 2 | 576.0 | 3.9 | 54.6 | 20.60 | 18.6 | 41.4 | 4396.00 | 15.00 | 579.00 | 106.83 |
| 3 | 6986.5 | 5.0 | 54.4 | 20.50 | 18.4 | 39.8 | 4399.00 | 17.83 | 557.00 | 129.10 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.80 | 18.7 | 38.0 | 4418.00 | 22.00 | 575.00 | 164.60 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.22 | 18.7 | 38.2 | 44.00 | 26.66 | 570.00 | 20.28 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.40 | 18.6 | 38.8 | 4445.00 | 30.50 | 578.00 | 236.48 |
表3 现场数据记录
Table 3 Onsite data recording
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 21.00 | 18.7 | 41.1 | 4378.00 | 10.25 | 578.00 | 66.57 |
| 2 | 576.0 | 3.9 | 54.6 | 20.60 | 18.6 | 41.4 | 4396.00 | 15.00 | 579.00 | 106.83 |
| 3 | 6986.5 | 5.0 | 54.4 | 20.50 | 18.4 | 39.8 | 4399.00 | 17.83 | 557.00 | 129.10 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.80 | 18.7 | 38.0 | 4418.00 | 22.00 | 575.00 | 164.60 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.22 | 18.7 | 38.2 | 44.00 | 26.66 | 570.00 | 20.28 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.40 | 18.6 | 38.8 | 4445.00 | 30.50 | 578.00 | 236.48 |
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | ∆pc/kPa | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 19.85 | 18.7 | 41.91 | 4378.00 | 11.23 | 578.00 | 3.44 | 68.99 |
| 2 | 576.0 | 3.9 | 54.6 | 20.09 | 18.6 | 41.79 | 4396.00 | 14.38 | 579.00 | 5.41 | 108.65 |
| 3 | 6986.5 | 5.0 | 54.4 | 19.83 | 18.4 | 40.28 | 4399.00 | 16.68 | 557.00 | 7.09 | 131.95 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.94 | 18.7 | 37.97 | 4418.00 | 20.45 | 575.00 | 10.22 | 164.35 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.21 | 18.7 | 38.27 | 44.00 | 25.86 | 570.00 | 1.43 | 20.93 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.45 | 18.6 | 38.84 | 4445.00 | 31.11 | 578.00 | 1.85 | 236.12 |
表4 印刷电路板式换热器的性能仿真结果
Table 4 Performance simulation results of PCHE
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | ∆pc/kPa | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 19.85 | 18.7 | 41.91 | 4378.00 | 11.23 | 578.00 | 3.44 | 68.99 |
| 2 | 576.0 | 3.9 | 54.6 | 20.09 | 18.6 | 41.79 | 4396.00 | 14.38 | 579.00 | 5.41 | 108.65 |
| 3 | 6986.5 | 5.0 | 54.4 | 19.83 | 18.4 | 40.28 | 4399.00 | 16.68 | 557.00 | 7.09 | 131.95 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.94 | 18.7 | 37.97 | 4418.00 | 20.45 | 575.00 | 10.22 | 164.35 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.21 | 18.7 | 38.27 | 44.00 | 25.86 | 570.00 | 1.43 | 20.93 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.45 | 18.6 | 38.84 | 4445.00 | 31.11 | 578.00 | 1.85 | 236.12 |
| 1 | 李迎凯. 基于热流固耦合的微型换热器设计方法研究[D]. 南昌: 南昌大学, 2015. |
| Li Y K. The research on the design method of micro heat exchanger based on thermal fluid-structure interaction[D]. Nanchang: Nanchang University, 2015. | |
| 2 | 尤学刚, 刘新宇, 曾冬, 等. 国产印刷电路板式换热器的首次工业应用研究[J]. 石油机械, 2022, 50(2): 46-52. |
| You X G, Liu X Y, Zeng D, et al. First industrial application research on domestic printed circuit heat exchanger[J]. China Petroleum Machinery, 2022, 50(2): 46-52. | |
| 3 | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
| 4 | Xu X Y, Wang Q W, Li L, et al. Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2 [J]. Numerical Heat Transfer Part A - Applications, 2015, 68(10): 1067-1086. |
| 5 | Bartel N, Chen M, Utgikar V P, et al. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors[J]. Annals of Nuclear Energy, 2015, 81: 143-149. |
| 6 | Khan H H, Aneesh A M, Sharma A, et al. Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 519-528. |
| 7 | Ma T, Li L, Xu X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. |
| 8 | Meshram A, Jaiswal A K, Khivsara S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied Thermal Engineering, 2016, 109: 861-870. |
| 9 | Kim S G, Lee Y, Ahn Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application[J]. Annals of Nuclear Energy, 2016, 92: 175-185. |
| 10 | Jeon S, Baik Y J, Byon C, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle[J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. |
| 11 | 谢瑶, 李剑锐,胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
| Xie Y, Li J R, Hu H T. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209. | |
| 12 | 袭著望. 微通道内氢气流动与换热特性数值研究[D]. 吉林: 东北电力大学, 2023. |
| Xi Z W. Numerical study of hydrogen flow and heat transfer characteristics in microchannels[D]. Jilin: Northeast Electric Power University, 2023. | |
| 13 | 余智强, 吴建泽, 任亚涛, 等. 印刷板式微通道换热器流动与传热特性的理论模型[J]. 化工学报, 2022, 73(12): 5324-534. |
| Yu Z Q, Wu J Z, Ren Y T, et al. Calculation model of flow and heat transfer characteristics of printed microchannel heat exchanger[J]. CIESC Journal, 2022, 73(12): 5324-534. | |
| 14 | 纪宇轩. 超临界二氧化碳布雷顿循环印刷电路板式换热器特性的模拟与试验研究[D]. 杭州: 浙江大学, 2022. |
| Ji Y X. Numerical and experimental research on characteristics of printed circuit board heat exchanger in supercritical carbon dioxide Brayton cycle[D]. Hangzhou: Zhejiang University, 2022. | |
| 15 | 李倩, 张蓉民, 林子杰, 等. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| Li Q, Zhang R M, Lin Z J, et al. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning[J]. CIESC Journal, 2024, 75(8): 2852-2864. | |
| 16 | Renaud L P, David S, Stephen O. Impact of mechanical design issues on printed circuit heat exchangers[C]//Proceedings of SCO2 Power Cycle Symposium 2011. Colorado: University of Colorado at Boulder, 2011. |
| 17 | David S, Renaud L P, Stephen J D. Design considerations for compact heat exchangers[C]//Proceedings of ICAPP 2008. Anaheim, CA USA, 2008. |
| 18 | 许旭东, 赵丹, 丁国良, 等. 冰箱用微通道冷凝器分相集总参数模型[J]. 化工学报, 2016, 67(S2): 217-222. |
| Xu X D, Zhao D, Ding G L, et al. Lumped parameter model for microchannel condenser of refrigerator[J]. CIESC Journal, 2016, 67(S2): 217-222. | |
| 19 | Oscarsson S P, Krakow K I, Lin S. Evaporator models for operation with dry, wet, and frosted finned surfaces: Part 1-heat transfer and fluid flow theory[J]. ASHRAE Trans, 1990, 96(1): 373-39. |
| 20 | Green R H, Roberts L. The effect of air-coil design on the performance of heat pumps and air conditioners[R]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States), 1996. |
| 21 | Jolly P G, Tso C P, Wong Y W, et al. Simulation and measurement on the full-load performance of a refrigeration system in a shipping container[J]. International Journal of Refrigeration, 2000, 23(2): 112-126. |
| 22 | Ren T, Ding G L, Wang T T, et al. A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory[J]. Applied Thermal Engineering, 201, 59(1/2): 660-674. |
| 23 | 郭梦茹, 蔡姗姗, 陈焕新, 等. 翅片管式冷凝器性能分析及多目标优化[J]. 制冷与空调, 2018, 18(4): 93-98. |
| Guo M R, Cai S S, Chen H X, et al. Performance analysis and multi-objective optimization of finned-tube condenser[J]. Refrigeration and Air-Conditioning, 2018, 18(4): 93-98. | |
| 24 | 王兆奇, 李孟山, 胡海涛, 等. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119. |
| Wang Z Q, Li M S, Hu H T, et al. Development of simulation model for double row folded microchannel heat exchanger[J]. CIESC Journal, 2021, 72(S1): 113-119. | |
| 25 | 孙浩然, 段钟弟, 丁国良. 采用适用于小管径空调器关联式的换热器仿真软件开发[C]//上海市制冷学会2013年学术年会. 上海, 201. |
| Sun H R, Duan Z D, Ding G L. Development of a simulation tool with correlations suitable for small diameter tube heat exchanger[C]//2013 Academic Annual Conference of Shanghai Refrigeration Society. Shanghai, 201. | |
| 26 | 刘焘. 套管换热器与翅片管换热器的动态分布参数仿真[D]. 上海: 上海交通大学, 2008. |
| Liu T. Dynamic and distributed model of double-tube heat exchanger and fin-and-tube heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
| 27 | 陈红. 制冷系统换热器建模与仿真方法研究[D]. 重庆: 重庆大学, 2006. |
| Chen H. Study on the methods of modeling and simulation for heat exchanger in refrigeration system[D]. Chongqing: Chongqing University, 2006. | |
| 28 | 王婷婷. 陆基和海况下LNG绕管式换热器的热力性能仿真与实验验证[D]. 上海: 上海交通大学, 2017. |
| Wang T T. Thermodynamic simulation and experimental validation of spiral-wound LNG heat exchangers applied in land-based and offshore LNG plants[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| 29 | Ruan B H, Lin W S, Li W Z, et al. Numerical simulation on heat transfer and flow of supercritical methane in printed circuit heat exchangers[J]. Cryogenics, 2022, 126: 103541. |
| 30 | Chen M H, Sun X D, Christensen R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. |
| 31 | Kim I H, No H C. Thermal-hydraulic physical models for a printed circuit heat exchanger covering He, He-CO2 mixture, and water fluids using experimental data and CFD[J]. Experimental Thermal and Fluid Science, 2013, 48: 213-221. |
| [1] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [2] | 卓森庆, 陈华, 陈伟, 尚彬, 刘恒恒, 古汤汤, 白韡, 王龙炎, 曹昊敏, 丁国良. 多联式空调系统APF性能仿真的模型开发与软件实现[J]. 化工学报, 2025, 76(S1): 370-376. |
| [3] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [4] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [5] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [6] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [7] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [8] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [9] | 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679. |
| [10] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [11] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [12] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [13] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [14] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [15] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号