化工学报

• •    

基于数据分块策略的双流多采样率GRU软测量建模

张震1(), 史旭东1,2, 王法正1, 熊伟丽1,2()   

  1. 1.江南大学物联网工程学院,江苏 无锡 214122
    2.江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2025-10-27 修回日期:2025-11-25 出版日期:2025-12-16
  • 通讯作者: 熊伟丽
  • 作者简介:张震(2002—),男,硕士研究生,15092619563@163.com
  • 基金资助:
    国家自然科学基金项目(62503200);江苏省自然科学基金项目(BK20251611);中央高校基本科研计划项目(JUSRP202501006)

A dual-stream multirate GRU soft sensor modeling based on data chunk strategy

Zhen ZHANG1(), Xudong SHI1,2, Fazheng WANG1, Weili XIONG1,2()   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    2.Key Laboratory of Advanced Process Control for Industry (Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2025-10-27 Revised:2025-11-25 Online:2025-12-16
  • Contact: Weili XIONG

摘要:

受传感器采样能力及工艺特性制约,一些生产过程变量通常具有不同的采样速率。然而,传统软测量建模一般假设所有数据采样速率相同,不能直接应用于多采样率工业场景。因此,提出一种基于数据分块策略的双流多采样率门控循环单元(Gated Recurrent Unit,GRU)的软测量建模方法。首先,基于采样频率高低设计数据分块策略,将数据划分为高频数据块与低频数据块;其次,构建双流特征提取网络,在低频数据流引入时序动态衰减模块,通过改进的衰减门控循环单元直接处理缺失数据,在高频数据流设计时序注意力增强模块,捕捉密集采样数据特征;进一步设计融合层自适应分配双流网络的隐藏特征权重,以构建处理多采样率数据的软测量模型。最后,通过脱丁烷塔过程及硫回收过程的应用仿真验证所提算法的预测效果。

关键词: 多采样率, 数据分块策略, 衰减门控循环单元, 软测量, 神经网络, 过程控制, 动态建模

Abstract:

Owing to limitations in sensor sampling capabilities and process characteristics, industrial process variables are often sampled at different rates. Conventional soft sensor modeling approaches, which typically assume uniform sampling rates across all variables, are not directly applicable to such multirate scenarios. To address this issue, this paper proposes a dual-stream modeling framework based on a data-block strategy and Gated Recurrent Units (GRUs). First, variables are segmented into high-frequency and low-frequency data blocks according to their sampling rates. A dual-stream network is then constructed for feature extraction: the low-frequency stream incorporates a temporal dynamic decay module, which employs a modified GRU with a decay mechanism to handle missing data points directly. In parallel, the high-frequency stream is equipped with a temporal attention enhancement module to capture discriminative features from the densely sampled data. Furthermore, a fusion layer is designed to adaptively aggregate the hidden features from both streams through learned weights, thereby building a robust soft sensor model capable of handling multirate data. The predictive performance and effectiveness of the proposed method are demonstrated through case studies on a debutanizer column process and a sulfur recovery unit process.

Key words: multirate sampling, data chunk strategy, decay gated recurrent unit, soft sensor, neural networks, process control, dynamic modeling

中图分类号: