| 1 |
中华人民共和国国务院. 国家重大科技基础设施建设中长期规划(2012—2030年)[Z/OL]. [2013-02-23]. .
|
|
The State Council of the People's Republic of China. National medium and long term plan for major science and technology infrastructure construction (2012—2030)[Z/OL]. [2013-02-23]. .
|
| 2 |
李文俊, 赵中阳, 倪震, 等. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519.
|
|
Li W J, Zhao Z Y, Ni Z, et al. CFD numerical simulation of wet flue gas desulfurization: performance improvement based on gas-liquid mass transfer enhancement[J]. CIESC Journal, 2024, 75(2): 505-519.
|
| 3 |
Yi H, Su Z G, Wang P H. Closed-loop shaping-based active disturbance rejection control with delay robustness and application to wet desulfurization process[J]. IEEE Transactions on Industrial Electronics, 2024, 71(6): 6117-6127.
|
| 4 |
Cai Y K, Lv L, Lu X P. The effects of inner electrode diameter on the performance of dielectric barrier discharge reactor for desulfurization and denitrification[J]. IEEE Transactions on Plasma Science, 2021, 49(2): 786-793.
|
| 5 |
Yamamoto H, Kuroki T, Fujishima H, et al. Pilot-scale NO x and SO x aftertreatment using a two-phase ozone and chemical injection in glass-melting-furnace exhaust gas[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6295-6302.
|
| 6 |
Qu J Y, Qi N N, Zhang K, et al. Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process[J]. Chinese Journal of Chemical Engineering, 2021, 29: 13-26.
|
| 7 |
Cheng T, Zhou X C, Yang L J, et al. Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system[J]. Journal of Environmental Sciences, 2020, 88: 72-80.
|
| 8 |
王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5): 1987-1997.
|
|
Wang G M, Li W J, Qiao J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5): 1987-1997.
|
| 9 |
Wang G M, Chen H, Han H G, et al. Predicting water quality with nonstationarity: event-triggered deep fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2690-2699.
|
| 10 |
Yuan X F, Qi S B, Wang Y L. Stacked enhanced auto-encoder for data-driven soft sensing of quality variable[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7953-7961.
|
| 11 |
Wang G M, Chen H, Jiang S L, et al. Neurodynamics-driven prediction model for state evolution of coastal water quality[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2519409.
|
| 12 |
蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量[J]. 自动化学报, 2019, 45(5): 906-919.
|
|
Meng X, Qiao J F, Han H G. Soft measurement of key effluent parameters in wastewater treatment process using brain-like modular neural networks[J]. Acta Automatica Sinica, 2019, 45(5): 906-919.
|
| 13 |
周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
|
|
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165.
|
| 14 |
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二 英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
|
|
Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706.
|
| 15 |
夏恒, 汤健, 崔璨麟, 等. 基于宽度混合森林回归的城市固废焚烧过程二 英排放软测量[J]. 自动化学报, 2023, 49(2): 343-365.
|
|
Xia H, Tang J, Cui C L, et al. Soft sensing method of dioxin emission in municipal solid waste incineration process based on broad hybrid forest regression[J]. Acta Automatica Sinica, 2023, 49(2): 343-365.
|
| 16 |
韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3): 1032-1040.
|
|
Han H G, Chen Z Y, Qiao J F, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040.
|
| 17 |
曹跃, 陈志文, 袁小锋, 等. 部分子块通讯的分布式PCA厂级工业过程监测方法[J]. 控制与决策, 2020, 35(6): 1281-1290.
|
|
Cao Y, Chen Z W, Yuan X F, et al. Distributed PCA for plant-wide processes monitoring with partial block communication[J]. Control and Decision, 2020, 35(6): 1281-1290.
|
| 18 |
Liu S, Zhong W Q, Chen X, et al. Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system[J]. Chinese Journal of Chemical Engineering, 2023, 54: 343-352.
|
| 19 |
Wang Q Y, Zhao H, Zhao Q L, et al. Prediction of SO2 emission concentration in industrial flue gas based on deep learning: the ammonia desulfurization system of the Yunnan aluminum carbon plant as the research object[J]. Process Safety and Environmental Protection, 2024, 185: 340-349.
|
| 20 |
Dabadghao V, Biegler L T, Bhattacharyya D. Multiscale modeling and nonlinear model predictive control for flue gas desulfurization[J]. Chemical Engineering Science, 2022, 252: 117451.
|
| 21 |
Yin X H, Sun K, Li S Y, et al. Enhancing deep learning for the comprehensive forecast model in flue gas desulfurization systems[J]. Control Engineering Practice, 2023, 138: 105587.
|
| 22 |
王康成, 尚超, 柯文思, 等. 化工过程深度神经网络软测量的结构与参数自动调整方法[J]. 化工学报, 2018, 69(3): 900-906.
|
|
Wang K C, Shang C, Ke W S, et al. Automatic structure and parameters tuning method for deep neural network soft sensor in chemical industries[J]. CIESC Journal, 2018, 69(3): 900-906.
|
| 23 |
耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571.
|
|
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571.
|
| 24 |
Wang K, Yuan X F, Chen J, et al. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring[J]. Neural Networks, 2021, 136: 54-62.
|
| 25 |
Wang G M, Jia Q S, Zhou M C, et al. Artificial neural networks for water quality soft-sensing in wastewater treatment: a review[J]. Artificial Intelligence Review, 2022, 55(1): 565-587.
|
| 26 |
Wang G M, Bi J, Jia Q S, et al. Event-driven model predictive control with deep learning for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6398-6407.
|
| 27 |
Wang G M, Jia Q S, Zhou M C, et al. Soft-sensing of wastewater treatment process via deep belief network with event-triggered learning[J]. Neurocomputing, 2021, 436: 103-113.
|
| 28 |
贾庆山, 杨玉, 夏俐, 等. 基于事件的优化方法简介及其在能源互联网中的应用[J]. 控制理论与应用, 2018, 35(1): 32-40.
|
|
Jia Q S, Yang Y, Xia L, et al. A tutorial on event-based optimization with application in energy Internet[J]. Control Theory & Applications, 2018, 35(1): 32-40.
|
| 29 |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
| 30 |
Cao X R. Stochastic learning and optimization—a sensitivity-based approach[J]. Annual Reviews in Control, 2009, 33(1): 11-24.
|