化工学报

• •    

烟气脱硫过程含硫量自适应预测与异常状态溯源方法

王功明1,2(), 刘起浩1,2, 陈红3, 韩红桂1,2, 乔俊飞1,2   

  1. 1.智慧环保北京实验室,北京 100124
    2.北京工业大学信息科学技术学院,北京 100124
    3.绿之缘环境产业集团有限公司,山东 日照 276800
  • 收稿日期:2025-11-13 修回日期:2025-12-30 出版日期:2025-12-30
  • 通讯作者: 王功明
  • 基金资助:
    国家自然科学基金面上项目(62373018);北京市自然科学基金面上项目(4232043);中国博士后科学基金(2025T180479)

Methods of adaptive prediction and abnormal states traceability for sulphur content in flue gas desulfurization process

Gongming WANG1,2(), Qihao LIU1,2, Hong CHEN3, Honggui HAN1,2, Junfei QIAO1,2   

  1. 1.Beijing Laboratory of Smart Environmental Protection, Beijing 100124, China
    2.School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
    3.GreenTech Environment Group Ltd. , Rizhao 276800, Shandong, China
  • Received:2025-11-13 Revised:2025-12-30 Online:2025-12-30
  • Contact: Gongming WANG

摘要:

烟气脱硫过程是控制二氧化硫(SO2)排放的核心举措,对改善空气质量、保护生态环境具有显著作用,其出气口SO2浓度状态直接决定着脱硫过程的成效及是否达标。针对烟气脱硫系统多工况运行、状态交互耦合、噪音干扰等特点导致的出气口SO2浓度难以精确预测与异常状态分析困难等问题,本文提出了一种基于增量式深度模糊神经网络(Incremental deep fuzzy neural network, IDFNN)的烟气脱硫过程含硫量自适应预测与异常状态溯源方法。首先,基于烟气脱硫过程实际运行数据,设计数据驱动的增量式深度特征提取器(Incremental deep feature extractor, IDFE),用以自适应提取原始数据中的关键深层特征,克服状态耦合与噪音对数据效率的影响。其次,将IDFE提取到的关键特征作为模糊神经网络(Fuzzy neural network, FNN)的输入,对含硫量动力学特性进行高效地有监督学习,进而实现对未来时间段的预测任务。同时,针对含硫量状态的预测信息,设计基于互信息度量的含硫量状态关联性统计分析方法,实现IDFNN模型对输入项的敏感度分析,进而实现对异常状态的溯源分析。最后,将所提方法用于实际烟气脱硫过程含硫量预测与异常状态溯源分析实验,结果显示IDFNN不仅能在复杂运行环境下实现对含硫量的精确预测,还能实现对异常状态诱因变量的溯源和筛选。

关键词: 烟气脱硫过程, 含硫量预测与状态溯源, 增量式深度特征提取器, 模糊神经网络, 互信息度量

Abstract:

The flue gas desulfurization process (FGDP) is a core measure to control the emission of SO2, which plays a significant role in improving air quality and protecting the ecological environment. The SO2 concentration at its outlet directly determines the effectiveness of FGDP and whether it meets the standards. In view of the problems such as the difficulties in accurately predicting the SO2 concentration at the outlet and analyzing abnormal states caused by the multi-condition operation, state interaction and coupling as well as noise interference of FGDP, this paper proposes effective methods of adaptive prediction and abnormal states traceability for sulphur content in FGDP based on incremental deep fuzzy neural network (IDFNN). First, a data-driven incremental deep feature extractor (IDFE) is designed based on real data of FGDP to adaptively extract the key deep features from the raw data. Second, the extracted features are considered as the inputs of fuzzy neural network (FNN), which can efficiently approximate the dynamic characteristics of sulphur content by supervised learning and further realize the prediction task for future time periods. Meanwhile, a statistical analysis method for the correlation of sulfur content based on mutual information measurement is designed to analyze the model sensitivity to inputs, which can realize the abnormal states traceability. Finally, the proposed INFNN is used to predict the sulphur content and analyze the abnormal states traceability in real FGDP, the results show that IDFNN does not only accurately predict the sulfur content in complex operating environments, but also traces and screens the inducing variables of abnormal states.

Key words: flue gas desulfurization process, sulfur content prediction and state traceability, incremental deep feature extractor, fuzzy neural network, mutual information measurement

中图分类号: