| [1] |
关于推进实施焦化行业超低排放的意见[Z/OL]. 环大气〔2024〕 5号.
|
| [2] |
Wang G M, Li X Y, Gu K, et al. Neurodynamics-driven model predictive control with soft-measurement for desulfurization system[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 19546-19554.
|
| [3] |
李征, 庄铠泽, 赵东杰, 等. 事件驱动的深度信念网络软测量模型设计方法[J]. 化工学报, 2025, 76(4): 1693-1701.
|
|
Li Z, Zhuang K Z, Zhao D J, et al. Design method of event-driven deep belief network soft-sensing model[J]. CIESC Journal, 2025, 76(4): 1693-1701.
|
| [4] |
Yamamoto H, Kuroki T, Fujishima H, et al. Pilot-scale NO x and SOx aftertreatment using a two-phase ozone and chemical injection in glass-melting-furnace exhaust gas[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6295-6302.
|
| [5] |
李文俊, 赵中阳, 倪震, 等. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519.
|
|
Li W J, Zhao Z Y, Ni Z, et al. CFD numerical simulation of wet flue gas desulfurization: performance improvement based on gas-liquid mass transfer enhancement[J]. CIESC Journal, 2024, 75(2): 505-519.
|
| [6] |
夏恒, 汤健, 崔璨麟, 等. 基于宽度混合森林回归的城市固废焚烧过程二噁英排放软测量[J]. 自动化学报, 2023, 49(2): 343-365.
|
|
Xia H, Tang J, Cui C L, et al. Soft sensing method of dioxin emission in municipal solid waste incineration process based on broad hybrid forest regression[J]. Acta Automatica Sinica, 2023, 49(2): 343-365.
|
| [7] |
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
|
|
Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706.
|
| [8] |
田昊, 汤健, 夏恒, 等. 基于IT2FBLS强化学习PID的MSWI过程炉膛温度控制[J]. 自动化学报, 2025, 51(7): 1626-1641.
|
|
Tian H, Tang J, Xia H, et al. Furnace temperature control using IT2FBLS-based reinforcement learning PID for MSWI process[J]. Acta Automatica Sinica, 2025, 51(7): 1626-1641.
|
| [9] |
Wang G M, Zhao Y D, Liu C X, et al. Data-driven robust adaptive control with deep learning for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 149-157.
|
| [10] |
朱霁霖, 桂卫华, 蒋朝辉, 等. 基于料面视频图像分析的高炉异常状态智能感知与识别[J]. 自动化学报, 2024, 50(7): 1345-1362.
|
|
Zhu J L, Gui W H, Jiang Z H, et al. Intelligent perception and recognition of blast furnace anomalies via burden surface video image analysis[J]. Acta Automatica Sinica, 2024, 50(7): 1345-1362.
|
| [11] |
王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5): 1987-1997.
|
|
Wang G M, Li W J, Qiao J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5): 1987-1997.
|
| [12] |
张璐, 张嘉成, 韩红桂, 等. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225.
|
|
Zhang L, Zhang J C, Han H G, et al. FNN-based process control for biochemical phosphorus in WWTP[J]. CIESC Journal, 2020, 71(3): 1217-1225.
|
| [13] |
伍小龙, 姜韦宇, 韩红桂, 等. 基于随机事件代理模型的污水处理鼓风机轴承温度智能预测[J]. 中国科学: 技术科学, 2025, 55(5): 879-892.
|
|
Wu X L, Jiang W Y, Han H G, et al. Intelligent prediction of wastewater treatment blower bearing temperature based on random event agent model[J]. Scientia Sinica (Technologica), 2025, 55(5): 879-892.
|
| [14] |
Gu K, Liu Y C, Liu H Y, et al. Air pollution monitoring by integrating local and global information in self-adaptive multiscale transform domain[J]. IEEE Transactions on Multimedia, 2025, 27: 3716-3728.
|
| [15] |
Said Y, Alassaf Y, Saidani T, et al. Context-aware feature extraction network for high-precision UAV-based vehicle detection in urban environments[J]. Computers, Materials and Continua, 2024, 81(3): 4349-4370.
|
| [16] |
Han H G, Sun C X, Wu X L, et al. Dynamic–static model for monitoring wastewater treatment processes[J]. Control Engineering Practice, 2023, 132: 105424.
|
| [17] |
Wang G M, Chen H, Han H G, et al. Predicting water quality with nonstationarity: event-triggered deep fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2690-2699.
|
| [18] |
贾庆山, 杨玉, 夏俐, 等. 基于事件的优化方法简介及其在能源互联网中的应用[J]. 控制理论与应用, 2018, 35(1): 32-40.
|
|
Jia Q S, Yang Y, Xia L, et al. A tutorial on event-based optimization with application in energy Internet[J]. Control Theory & Applications, 2018, 35(1): 32-40.
|
| [19] |
Wang G M, Chen H, Jiang S L, et al. Neurodynamics-driven prediction model for state evolution of coastal water quality[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2519409.
|
| [20] |
Wang G M, Bi J, Jia Q S, et al. Event-driven model predictive control with deep learning for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6398-6407.
|
| [21] |
Vuokila N, Cunning C, Zhang J, et al. The application of neural networks to the modeling of magnetic hysteresis[J]. IEEE Transactions on Magnetics, 2024, 60(3): 7300604.
|
| [22] |
Bertipaglia A, Alirezaei M, Happee R, et al. An unscented Kalman filter-informed neural network for vehicle sideslip angle estimation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 12731-12746.
|
| [23] |
王功明, 乔俊飞, 关丽娜, 等. 深度信念网络研究现状与展望[J].自动化学报, 2021, 47(1): 35-49.
|
|
Wang G M, Qiao J F, Guan L N, et al. Review and prospect on deep belief network[J]. Acta Automatica Sinica, 2021, 47(1): 35-49.
|
| [24] |
Han H G, Zhang L, Wu X L, et al. An efficient second-order algorithm for self-organizing fuzzy neural networks[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 14-26.
|
| [25] |
Wang G M, Qiao J F, Bi J, et al. An adaptive deep belief network with sparse restricted Boltzmann machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4217-4228.
|
| [26] |
Wang G M, Jia Q S, Qiao J F, et al. A sparse deep belief network with efficient fuzzy learning framework[J]. Neural Networks, 2020, 121: 430-440.
|