化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2606-2615.DOI: 10.11949/j.issn.0438-1157.20190180
收稿日期:
2019-03-03
修回日期:
2019-04-20
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
乔俊飞
作者简介:
乔俊飞(1968—),男,教授, <email>junfeiq@bjut.edu.cn</email>
基金资助:
Junfei QIAO1,2(),Zengzeng HE1,2,Shengli DU1,2
Received:
2019-03-03
Revised:
2019-04-20
Online:
2019-07-05
Published:
2019-07-05
Contact:
Junfei QIAO
摘要:
针对在无增长和修剪阈值时模糊神经网络结构难以自适应问题,提出一种基于混合评价指标(hybrid evaluation index, HEI)的结构设计方法。首先,通过模糊C均值聚类算法(fuzzy C-means clustering, FCM)确定初始规则层神经元数目及其中心与宽度。其次,基于戴维森堡丁指数(Davies bouldin index, DBI)和邓恩指数(Dunn index, DI)提出一种新的相关性评价指标(relevance evaluation index, REI)来计算规则层各神经元输出之间的相关性,同时根据训练过程中网络输出均方根误差(root mean square error, RMSE)的变化情况来确定网络的学习能力,然后基于REI和RMSE提出了HEI。通过HEI来调整模糊神经网络的拓扑结构,有效解决了在无增长和修剪阈值时网络结构难以动态自调整的问题且避免了网络结构冗余。最后,通过对Mackey-Glass时间序列预测、非线性系统辨识和大气中PM2.5浓度预测,证明了该结构设计方法的可行性和有效性。
中图分类号:
乔俊飞, 贺增增, 杜胜利. 基于混合评价指标的自组织模糊神经网络设计研究[J]. 化工学报, 2019, 70(7): 2606-2615.
Junfei QIAO, Zengzeng HE, Shengli DU. Design of self-organizing fuzzy neural network based on hybrid evaluation index[J]. CIESC Journal, 2019, 70(7): 2606-2615.
Method | Number of rule nurons | Testing RMSE | Training time/s |
---|---|---|---|
HEI-SOFNN | 5 | 0.0093 | 10.71 |
SOFNN-AGA [ | 6 | 0.0119 | 21.20 |
GPFNN [ | 7 | 0.0107 | 27.33 |
NFN-FOESA[ | 7 | 0.0132 | 168.35 |
FAOS-PFNN [ | 7 | 0.0201 | 27.33 |
表1 Mackey-Glass时间序列预测中
Table 1 Performance comparisons of different methods for Mackey-Glass time series prediction
Method | Number of rule nurons | Testing RMSE | Training time/s |
---|---|---|---|
HEI-SOFNN | 5 | 0.0093 | 10.71 |
SOFNN-AGA [ | 6 | 0.0119 | 21.20 |
GPFNN [ | 7 | 0.0107 | 27.33 |
NFN-FOESA[ | 7 | 0.0132 | 168.35 |
FAOS-PFNN [ | 7 | 0.0201 | 27.33 |
Method | Number of rule nurons | Testing RMSE | Training time/s |
---|---|---|---|
HEI-SOFNN | 5 | 0.0089 | 7.34 |
SOFNN-AGA[ | 7 | 0.0090 | 13.10 |
GDFNN[ | 8 | 0.0121 | 6.56 |
GPFNN[ | 8 | 0.0067 | 17.26 |
NFN-FOESA [ | 9 | 0.0060 | 21.72 |
表2 非线性系统辨识中不同方法的性能对比
Table 2 Performance comparisons of different methods for nonlinear system identification
Method | Number of rule nurons | Testing RMSE | Training time/s |
---|---|---|---|
HEI-SOFNN | 5 | 0.0089 | 7.34 |
SOFNN-AGA[ | 7 | 0.0090 | 13.10 |
GDFNN[ | 8 | 0.0121 | 6.56 |
GPFNN[ | 8 | 0.0067 | 17.26 |
NFN-FOESA [ | 9 | 0.0060 | 21.72 |
Method | Testing RMSE | R2 | Number of rule nurons |
---|---|---|---|
HEI-SOFNN | 14.945 | 0.8823 | 6 |
FNN | 36.687 | 0.7991 | 8 |
SOG-SOFNN[ | 17.900 | 0.8400 | 10 |
RFNN[ | 35.848 | 0.8052 | 9 |
表3 PM2.5浓度预测中不同方法的性能对比
Table 3 Performance comparisons of different methods for PM2.5 concentration prediction
Method | Testing RMSE | R2 | Number of rule nurons |
---|---|---|---|
HEI-SOFNN | 14.945 | 0.8823 | 6 |
FNN | 36.687 | 0.7991 | 8 |
SOG-SOFNN[ | 17.900 | 0.8400 | 10 |
RFNN[ | 35.848 | 0.8052 | 9 |
1 | LuoG Z, ZhangR, ChenZ, et al. A novel nonlinear modeling method for permanent-magnet synchronous motors[J]. IEEE Transactions Industrial Electronics, 2016, 63(10): 6490-6498. |
2 | WangN, ErM J, HanM. Dynamic tanker steering control using generalized ellipsoidal-basis-function-based fuzzy neural networks[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1414-1427. |
3 | GengJ, HuangM L, LiM W, et al. Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model[J]. Neurocomputing, 2015, 151: 1362-1373. |
4 | CoyleD, PrasadG, McGinnityT M. Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain–computer interface[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(6): 1458-1471. |
5 | ZhouY M, DexterA. Off-line identification of nonlinear, dynamic systems using a neuro-fuzzy modelling technique[J]. Fuzzy Sets and Systems, 2013, 225: 74-92. |
6 | WuS, ErM J, GaoY. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594. |
7 | MalekH, EbadzadehM M, RahmatiM. Three new fuzzy neural networks learning algorithms based on clustering, training error and genetic algorithm[J]. Applied Intelligence, 2012, 37(2): 280-289. |
8 | JuangC F, ChenT C, ChengW Y. Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(4): 717-728. |
9 | WangN, ErM J, MengX. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks[J]. Neurocomputing, 2009, 72(16/17/18): 3818-3829. |
10 | EbadzadehM M, Salimi-BadrA. CFNN: correlated fuzzy neural network[J]. Neurocomputing, 2015, 148: 430-444. |
11 | WangN. A generalized ellipsoidal basis function based online self-constructing fuzzy neural network[J]. Neural Processing Letters, 2011, 34(1): 13-37. |
12 | PrasadM, LinY Y, LinC T, et al. A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism[J]. Neurocomputing, 2015, 167: 558-568. |
13 | McDonaldS, KerrD, ColemanS, et al. Modelling retinal ganglion cells using self-organising fuzzy neural networks[C]//Neural Networks (IJCNN), 2015 International Joint Conference. IEEE, 2015: 1-8. |
14 | de Jesús RubioJ. SOFMLS: online self-organizing fuzzy modified least-squares network[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(6): 1296-1309. |
15 | LinC J, ChenC H. Nonlinear system control using self-evolving neural fuzzy inference networks with reinforcement evolutionary learning[J]. Applied Soft Computing, 2011, 11(8): 5463-5476. |
16 | ChenC, WangF Y. A self-organizing neuro-fuzzy network based on first order effect sensitivity analysis[J]. Neurocomputing, 2013, 118(11): 21–32. |
17 | HanH G, LinZ L, QiaoJ F. Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm[J]. Neurocomputing, 2017, 266: 566-578. |
18 | 乔俊飞, 张力, 李文静. 基于尖峰自组织模糊神经网络的需水量预测[J]. 控制与决策, 2018, 33(12): 2197-2202. |
QiaoJ F, ZhangL, LiW J. Prediction of water demand based on spiking self-organizing fuzzy neural network[J]. Control and Decision, 2018, 33(12): 2197-2202. | |
19 | JuangC F, HsiehC D. A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2): 372-384. |
20 | KhayatO, EbadzadehM M, ShahdoostiH R, et al. A novel hybrid algorithm for creating self-organizing fuzzy neural networks[J]. Neurocomputing, 2009, 73(1/2/3): 517-524. |
21 | IzakianH, PedryczW, JamalI. Fuzzy clustering of time series data using dynamic time warping distance[J]. Engineering Applications of Artificial Intelligence, 2015, 39: 235-244. |
22 | IzakianH, PedryczW. Agreement-based fuzzy C-means for clustering data with blocks of features[J]. Neurocomputing, 2014, 127: 266-280. |
23 | DunnJ C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3: 32-57. |
24 | NasrM B, ChtourouM. A self-organizing map-based initialization for hybrid training of feedforward neural networks[J]. Applied Soft Computing, 2011, 11(8): 4458-4464. |
25 | LiuY, ZhouC F, ChenY W. Weight initialization of feedforward neural networks by means of partial least squares[C]//Machine Learning and Cybernetics, 2006 International Conference. IEEE, 2006: 3119-3122. |
26 | SongQ. Robust initialization of a Jordan network with recurrent constrained learning[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2460-2473. |
27 | TalaśkaT, KolasaM, DługoszR, et al. An efficient initialization mechanism of neurons for winner takes all neural network implemented in the CMOS technology[J]. Applied Mathematics and Computation, 2015, 267: 119–138. |
28 | QiaoJ F, LiS Y, LiW J. Mutual information based weight initialization method for sigmoidal feedforward neural networks[J]. Neurocomputing, 2016, 207: 676-683. |
29 | WuJ J, LiuH F, XiongH, et al. K-means-based consensus clustering: a unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 155-169. |
30 | LiuY C, LiZ M, XiongH, et al. Understanding of internal clustering validation measures[C]//Data Mining (ICDM), 2010 IEEE 10th International Conference. IEEE, 2010: 911-916. |
31 | AzidA, JuahirH, TorimanM E, et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia[J]. Water, Air & Soil Pollution, 2014, 225(8): 2063. |
32 | QiaoJ F, HanH G. Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach[J]. Automatica, 2012, 48(8): 1729-1734. |
33 | IslamM M, SattarM A, AminM F, et al. A new adaptive merging and growing algorithm for designing artificial neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(3): 705-722. |
34 | HanH G, QiaoJ F. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(6): 1129-1143. |
35 | QiaoJ F, CaiJ, HanH G, et al. Predicting PM2. 5 concentrations at a regional background station using second order self-organizing fuzzy neural network[J]. Atmosphere, 2017, 8(1): 10. |
36 | HeZ Z, YeX D, GuK, et al. Learn to predict PM2. 5 concentration with image contrast-sensitive features[C]//2018 37th Chinese Control Conference (CCC). IEEE, 2018: 4102-4106. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[4] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[5] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[6] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[7] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[10] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||