化工学报

• •    

基于KELM-ANFIS的模拟移动床自适应建模

陈宇翔(), 赵忠盖(), 刘飞   

  1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2025-08-15 修回日期:2025-12-15 出版日期:2026-01-07
  • 通讯作者: 赵忠盖
  • 作者简介:陈宇翔(2001—),男,硕士研究生,15189978117@163.com
  • 基金资助:
    国家自然科学基金项目(62473175)

Adaptive modeling of simulated moving bed based on KELM-ANFIS

Yuxiang CHEN(), Zhonggai ZHAO(), Fei LIU   

  1. Key Laboratory of Advanced Control for Light Industry Process of the Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2025-08-15 Revised:2025-12-15 Online:2026-01-07
  • Contact: Zhonggai ZHAO

摘要:

模拟移动床色谱分离是一种高效的新型分离技术,但是其分离过程中由于填料的老化、吸附剂活性的下降等会导致吸附特性发生变化。如何使得分离过程长期稳定是一个非常具有挑战性的问题。自适应模型能够适应过程条件的变化,确保模型输出如纯度,产率等始终反映当前的系统状态。为应对吸附剂老化,提出一种基于核极限学习自适应神经模糊推理系统(KELM-ANFIS)的模拟移动床自适应建模方法,模型采用滑动窗口策略进行在线数据采样,前件参数通过梯度下降法,后件参数则使用增量学习法进行参数更新,实现了离线训练与在线更新的结合,有效避免了频繁的离线重新建模,显著节约了时间和人力成本。实验结果与自适应KELM、 自适应ELANFIS 等模型对比,验证了所提方法在吸附剂老化下的分离性能预测上的显著优越性,为模拟移动床在实际工况下的操作工艺优化提供了高效的自适应工具。

关键词: 模拟移动床, 色谱, 分离, 吸附, 自适应模型, 核极限学习自适应神经模糊推理系统

Abstract:

Simulated moving bed chromatography (SMB) is a highly efficient new separation technology. However, during the separation process, adsorption characteristics can change due to factors such as packing aging and decreased adsorbent activity. Maintaining long-term stability in the separation process is a significant challenge. A highly accurate adaptive model can adapt to changing process conditions, ensuring that model outputs such as purity and yield consistently reflect the current system state. To address the model mismatch caused by adsorbent aging, a simulated moving bed adaptive modeling approach based on the kernel extreme learning adaptive neural-fuzzy inference system (KELM-ANFIS) is proposed. This method innovatively combines the nonlinear feature capture capabilities of ANFIS with the kernel function mapping advantages of KELM, significantly enhancing the model's nonlinear modeling and generalization capabilities. The model employs a sliding window strategy for online data sampling and a separate parameter update strategy: gradient descent is used for the antecedent parameters, while incremental learning is used for rapid parameter update of the consequent parameters. This approach combines offline training with online updating, effectively avoiding frequent offline re-modeling and significantly saving time and labor costs. The experimental results were compared with models such as adaptive KELM and adaptive ELANFIS models, verifying the significant superiority of the proposed method in predicting separation performance under adsorbent aging, and providing an efficient adaptive tool for process prediction and operation process optimization of simulated moving bed under actual working conditions.

Key words: simulated moving bed, chromatography, separation, adsorption, adaptive model, kernel limit learning adaptive neuro-fuzzy inference system

中图分类号: