| [1] |
Zhang Z P, Zeng T Q, Wei C L, et al. Ce-promoted Fe-K-Mg catalyst and its application in dehydrogenation of ethylbenzene[J]. Molecular Catalysis, 2023, 540: 113058.
|
| [2] |
李建韬, 金月昶, 金熙俊. 苯乙烯的生产现状及工艺进展[J]. 当代化工, 2015, 44(2): 359-362.
|
|
Li J T, Jin Y C, Jin X J. Production status and technological progress of styrene[J]. Contemporary Chemical Industry, 2015, 44(2): 359-362.
|
| [3] |
吕鸿博. 苯乙烯生产技术和应用研究进展[J]. 石化技术, 2018, 25(2): 100.
|
|
Lv H B. Discussion on new progress of styrene production technology and applied research[J]. Petrochemical Industry Technology, 2018, 25(2): 100.
|
| [4] |
Zhang J P, Gao W P, Yang K R, et al. Redox-activated supersaturation of ceria solid solution as a dynamic catalyst enabling low-temperature ethylbenzene oxidative dehydrogenation[J]. ACS Catalysis, 2025, 15(2): 956-966.
|
| [5] |
SUSlick K S. Kirk-Othmer encyclopedia of chemical technology[M]. Wiley & Sons: New York, 1998, 26: 517-541.
|
| [6] |
Wang W, Chen S, Pei C L, et al. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis[J]. Science, 2023, 381(6660): 886-890.
|
| [7] |
Luyben W L. Design and control of the styrene process[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1231-1246.
|
| [8] |
Lee E H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam[J]. Catalysis Reviews, 1974, 8(1): 285-305.
|
| [9] |
Hirano T. Roles of potassium in potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene[J]. Applied Catalysis, 1986, 26: 65-79.
|
| [10] |
张雄福, 王金渠, 刘海鸥, 等. 沸石膜反应器乙苯脱氢反应性能[J]. 高校化学工程学报, 2001, 15(2): 121-126.
|
|
Zhang X F, Wang J Q, Liu H O, et al. Studies of dehydrogenation of ethylbenzene in zeolite membrane reactors[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(2): 121-126.
|
| [11] |
Cavani F, Trifirò F. Alternative processes for the production of styrene[J]. Applied Catalysis A: General, 1995, 133(2): 219-239.
|
| [12] |
Sivaranjani K, Verma A, Gopinath C S. Molecular oxygen-assisted oxidative dehydrogenation of ethylbenzene to styrene with nanocrystalline Ti1-xVxO2 [J]. Green Chemistry, 2012, 14(2): 461-471.
|
| [13] |
Guo F S, Yang P J, Pan Z M, et al. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene[J]. Angewandte Chemie, 2017, 129(28): 8343-8347.
|
| [14] |
Kainthla I, Babu G V R, Bhanushali J T, et al. Development of stable MoO3/TiO2-Al2O3 catalyst for oxidative dehydrogenation of ethylbenzene to styrene using CO2 as soft oxidant[J]. Journal of CO2 Utilization, 2017, 18: 309-317.
|
| [15] |
Zhu X, Gao Y F, Wang X J, et al. A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme[J]. Nature Communications, 2021, 12: 1329.
|
| [16] |
Nederlof C, Zarubina V, Melián-Cabrera I, et al. Oxidative dehydrogenation of ethylbenzene to styrene over alumina: effect of calcination[J]. Catalysis Science & Technology, 2013, 3(2): 519-526.
|
| [17] |
Zhang L, Wu Z L, Nelson N C, et al. Role of CO2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst[J]. ACS Catalysis, 2015, 5(11): 6426-6435.
|
| [18] |
Liu J C, Li F X. Mixed oxides as multi-functional reaction media for chemical looping catalysis[J]. Chemical Communications, 2023, 59(1): 10-28.
|
| [19] |
Madduluri V R, Rao K S R. Advantage of co embedded γ-Al2O3 catalysts over MgO and SiO2 solid oxides in the selective production of styrene monomer[J]. Catalysis Letters, 2019, 149(11): 3238-3252.
|
| [20] |
Zhao X, Zhou H, Sikarwar V S, et al. Biomass-based chemical looping technologies: the good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910.
|
| [21] |
Schmitt R, Nenning A, Kraynis O, et al. A review of defect structure and chemistry in ceria and its solid solutions[J]. Chemical Society Reviews, 2020, 49(2): 554-592.
|
| [22] |
Venkataswamy P, Jampaiah D, Kandjani A E, et al. Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: Effect of metal doping on catalytic activity[J]. Research on Chemical Intermediates, 2018, 44(4): 2523-2543.
|
| [23] |
Gabra S, Marek E J, Poulston S, et al. The use of strontium ferrite perovskite as an oxygen carrier in the chemical looping epoxidation of ethylene[J]. Applied Catalysis B: Environmental, 2021, 286: 119821.
|
| [24] |
Zhang R J, Liu G, Huo C B, et al. Tailoring catalytic and oxygen release capability in LaFe1–xNixO3 to intensify chemical looping reactions at medium temperatures[J]. ACS Catalysis, 2024, 14(10): 7771-7787.
|
| [25] |
Zhou M Y, Wu J R, Lu Y G, et al. Non-metallic phosphorus-induced lattice engineering in LaFeO3 perovskite: Oxygen vacancy modulation for enhanced methane conversion in chemical looping partial oxidation[J]. Chemical Engineering Journal, 2025, 520: 165963.
|
| [26] |
Ding W X, Zhao K, Jiang S C, et al. Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2021, 609: 117910.
|
| [27] |
Luongo G, Donat F, Bork A H, et al. Highly selective oxidative dehydrogenation of ethane to ethylene via chemical looping with oxygen uncoupling through structural engineering of the oxygen carrier[J]. Advanced Energy Materials, 2022, 12(23): 2200405.
|
| [28] |
Gao Y F, Haeri F, He F, et al. Alkali metal-promoted LaxSr2–xFeO4–δ redox catalysts for chemical looping oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2018, 8(3): 1757-1766.
|
| [29] |
Wang R Y, Zhang J P, Li D F, et al. Lattice oxygen regulation of perovskites for chemical looping oxidative dehydrogenation of ethylbenzene to styrene[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8948-8957.
|
| [30] |
Zhang W, Zhang J P, Dai X R, et al. Oxygen-vacancies enriched SrMnO3 for chemical looping oxidative dehydrogenation of ethylbenzene[J]. Industrial & Engineering Chemistry Research, 2025, 64(17): 8722-8734.
|