CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3011-3020.DOI: 10.11949/0438-1157.20181496
Previous Articles Next Articles
Xiehe YANG(),Wenfeng SHEN,Yang ZHANG(),Hai ZHANG,Jiansheng ZHANG,Junfu LYU
Received:
2018-12-01
Revised:
2019-02-03
Online:
2019-08-05
Published:
2019-08-05
Contact:
Yang ZHANG
通讯作者:
张扬
作者简介:
杨协和(1994—),男,博士研究生,基金资助:
CLC Number:
Xiehe YANG, Wenfeng SHEN, Yang ZHANG, Hai ZHANG, Jiansheng ZHANG, Junfu LYU. Numerical investigation and prediction models for methanol-air laminar flame speed[J]. CIESC Journal, 2019, 70(8): 3011-3020.
杨协和, 沈文锋, 张扬, 张海, 张建胜, 吕俊复. 甲醇-空气层流火焰速度的数值研究和预测模型[J]. 化工学报, 2019, 70(8): 3011-3020.
Fig.1 Variations of laminar flame speed of methanol-air mixtures with respect to normalized equivalence ratio at ambient temperature and pressure(p = 101325 Pa, Tu= 298 K)
Fig.2 Variations of laminar flame speed of methanol-air mixtures with respect to normalized equivalence ratio at ambient pressure and elevated temperature (p = 101325 Pa, Tu = (340±3) K)
Fig.5 Reaction sensitivity of laminar flame speed of methanol-air mixtures at different normalized equivalence ratios and elevated pressure (Tu= 298 K)
反应 | 参考文献 | A | β | Ea/(J/mol) |
---|---|---|---|---|
R1 CH3OH+OH | [ | 7.100×106 | 1.800 | -2494.8 |
[ | 3.080×104 | 2.650 | -3376.7 | |
R2 CH3OH+OH | [ | 1.000×106 | 2.100 | 2079.1 |
[ | 1.500×102 | 3.030 | -3193.8 | |
R3 CH3OH + H | [ | 3.200×1013 | 0.000 | 25512.8 |
[ | 3.070×105 | 2.550 | 22771.0 | |
R4 CH3OH + H | [ | 8.000×1012 | 0.000 | 25512.8 |
[ | 1.990×105 | 2.560 | 43114.3 |
Table 1 Kinetic constants for dehydrogenation reaction of CH3OH
反应 | 参考文献 | A | β | Ea/(J/mol) |
---|---|---|---|---|
R1 CH3OH+OH | [ | 7.100×106 | 1.800 | -2494.8 |
[ | 3.080×104 | 2.650 | -3376.7 | |
R2 CH3OH+OH | [ | 1.000×106 | 2.100 | 2079.1 |
[ | 1.500×102 | 3.030 | -3193.8 | |
R3 CH3OH + H | [ | 3.200×1013 | 0.000 | 25512.8 |
[ | 3.070×105 | 2.550 | 22771.0 | |
R4 CH3OH + H | [ | 8.000×1012 | 0.000 | 25512.8 |
[ | 1.990×105 | 2.560 | 43114.3 |
1 | 朱杰, 崔宇, 陈元君, 等. 甲醇制烯烃过程研究进展[J]. 化工学报, 2010, 61(7): 1674-1684. |
ZhuJ, CuiY, ChenY J, et al. Recent researches on process from methanol to olefins[J]. CIESC Journal, 2010,61(7):1674-1684. | |
2 | 吴文章, 郭文瑶, 肖文德, 等. 甲醇与C4 ~C6烯烃共反应制丙烯副产物生成途径[J]. 化工学报, 2012, 61(2): 493-499. |
WuW Z, GuoW Y, XiaoW D, et al. Reaction path for formation of by-products in co-reaction of methanol and C4—C6 alkenes to propylene[J]. CIESC Journal, 2012, 63(2): 493-499. | |
3 | TaoY J, SmithG P, WangH. Critical kinetics uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion[J]. Combustion and Flame, 2018, 195: 18-29. |
4 | GibbsG J, CalcoteH F. Effect of molecular structure on burning velocity[J]. Journal of Chemical and Engineering Data, 1959, 4(3): 226-237. |
5 | MetghalC M, KeckJ C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature[J]. Combustion and Flame, 1982, 48: 191-210. |
6 | Gülder ÖL. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures[J]. Symposium (International) on Combustion, 1982, 19(1): 275-281. |
7 | SaeedK, StoneC R. Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model[J]. Combustion and Flame, 2004, 139(1): 152-166. |
8 | ZhangZ, HuangZ, WangX, et al. Measurements of laminar burning velocities and Markstein lengths for methanol–air–nitrogen mixtures at elevated pressures and temperatures[J]. Combustion and Flame, 2008, 155(3): 358-368. |
9 | BeeckmannJ, CailL, PitschH. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure[J]. Fuel, 2014, 117: 340-350. |
10 | VancoillieJ, ChristensenM, NilssonE J K, et al. Temperature dependence of the laminar burning velocity of methanol flames[J]. Energy & Fuels, 2012, 26(3): 1557-1564. |
11 | SileghemL, AlekseevV A, VancoillieJ, et al. Laminar burning velocities of primary reference fuels and simple alcohols[J]. Fuel, 2014, 115: 32-40. |
12 | EgolfopoulosF N, DuD X, LawC K. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes[J]. Combustion Science and Technology, 1992, 83(1/2/3): 33-75. |
13 | VelooP S, WangY L, EgolfopoulosF N, et al. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames[J]. Combustion and Flame, 2010, 157(10): 1989-2004. |
14 | WestbrookC K, DryerF L. Comprehensive mechanism for methanol oxidation[J]. Combustion Science and Technology, 1979, 20(3/4): 125-140. |
15 | BradleyD, DixonL G, HabikS E D, et al. Laminar flame structure and burning velocities of premixed methanol-air[J]. Combustion and Flame, 1991, 85(1): 105-120. |
16 | HeldT J, DryerF L. A comprehensive mechanism for methanol oxidation[J]. International Journal of Chemical Kinetics, 1998, 30(11): 805-830. |
17 | LiJ, ZhaoZ, KazakovA, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109-136. |
18 | BurkeU, MetcalfeW K, BurkeS M, et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame, 2016, 165: 125-136. |
19 | WangH, YouX Q, JoshiA V, et al. USC Mech version Ⅱ. High-temperature combustion reaction model of H2/CO/C1-C4compounds[EB/OL]. [2007-5].. |
20 | KeeJ, GrcarK, SmookeM D, et al. Premix: a Fortran program for modelling steady laminar one-dimensional premixed flames[R]. Livermore, CA: SANDIA National Laboratories, SAND85-8240, 1985. |
21 | EgolfopoulosF N. Geometric and radiation effects on steady and unsteady strained laminar flames[J]. Proceedings of the Combustion Institute, 1994, 25(1): 1375-1381. |
22 | KeeR J, RuplyF M, MillerJ A. Chemkin-Ⅱ: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Livermore, CA. Sandia National Laboratories, Report SAND89-8009, 1989. |
23 | KeeR J, DixonL G, WarnatzJ, et al. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties[R]. Sandia National Laboratories Report SAND86-8246, 1986. |
24 | EduardoF T, MarioS S, AntonioL S, et al. A multipurpose reduced chemical-kinetic mechanism for methanol combustion[J]. Combustion Theory and Modelling, 2016, 20(4): 613-631. |
25 | LawC K. Combustion Physics[M]. New York: Cambridge University Press, 2006: 14-16. |
26 | MeanaP R, XuX F, MaH, et al. Computational kinetics by variational transition-state theory with semiclassical multidimensional tunneling: direct dynamics rate constants for the abstraction of H from CH3OH by Triplet oxygen atoms[J]. The Journal of Physical Chemistry A, 2017, 121(8): 1693-1707. |
27 | GaoL G, ZhengJ, FernandezR A, et al. Kinetics of the methanol reaction with OH at interstellar, atmospheric, and combustion temperatures[J]. J. Am Chem. Soc., 2018, 140(8): 2906-2918. |
28 | XuS, LinM C. Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH[J]. Proceedings of the Combustion Institute, 2007, 31(1): 159-166. |
29 | MeanaP R, TruhlarD G, FernÁndezR A. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen[J]. The Journal of Chemical Physics, 2011, 134(9): 094302. |
30 | MüllerU C, BolligM, PetersN. Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames[J]. Combustion and Flame, 1997, 108(3): 349-356. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||