1 |
KörbitzW. Biodiesel production in Europe and North America, an encouraging prospect[J]. Renew Energy, 1999, 16(1-4): 1078-1083.
|
2 |
MazuttiM A, VollF A P, Cardozo-FilhoL, et al. Thermophysical properties of biodiesel and related systems: (liquid+liquid) equilibrium data for soybean biodiesel[J]. The Journal of Chemical Thermodynamics, 2013, 58: 83-94.
|
3 |
CaresanaF. Impact of biodiesel bulk modulus on injection pressure and injection timing. The effect of residual pressure[J]. Fuel, 2011, 90(2): 477-485.
|
4 |
Torres-JimenezE, KeglM, DoradoR, et al. Numerical injection characteristics analysis of various renewable fuel blends[J]. Fuel, 2012, 97: 832-842.
|
5 |
TruslerJ P M. Physical Acoustics and Metrology of Fluids[M]. Bristol: Adam Hilger, 1991: 210-230.
|
6 |
LiuQ, FengX, AnB, et al. Speed of sound measurements using a cylindrical resonator for gaseous carbon dioxide and propene[J]. Journal of Chemical & Engineering Data, 2014, 59(9): 2788-2798.
|
7 |
HeM G, LiuZ G, YinJ M. Measurement of speed of sound with a spherical resonator: HCFC-22, HFC-152a, HFC-143a, and propane[J]. International Journal of Thermophysics, 2002, 23(6): 1599-1615.
|
8 |
DávilaM J, GedanitzH, SpanR. Speed of sound measurements of liquid C1—C4 alkanols[J]. The Journal of Chemical Thermodynamics, 2016, 93: 157-163.
|
9 |
WeggeR, RichterM, SpanR. Speed of sound measurements in ethanol and benzene over the temperature range from (253.2 to 353.2) K at pressures up to 30 MPa[J]. Journal of Chemical & Engineering Data, 2015, 60(5): 1345-1353.
|
10 |
FröbaA P, BoteroC, LeipertzA. Thermal diffusivity, sound speed, viscosity, and surface tension of R227ea (1,1,1,2,3,3,3-heptafluoropropane)[J]. International of Journal Thermophysics, 2006, 27(6): 1609-1625.
|
11 |
FröbaA P, KrzeminskiH, LeipertzA. Thermophysical properties of 1,1,1,3,3-pentafluorobutane (R365mfc)[J]. International of Journal Thermophysics, 2004, 25(4): 987-1004.
|
12 |
郑雄, 张颖, 王升, 等. 自发布里渊散射法异丙醚声速的实验测量[J]. 工程热物理学报, 2015, 36(9): 1874-1878.
|
|
ZhengX, ZhangY, WangS, et al. Measurement of speed of sound of di-isopropyl ether (DIPE) using spontaneous Brillouin scattering method[J]. Journal of Engineering Thermophysics, 2015, 36(9): 1874-1878.
|
13 |
FreitasS V D, CunhaD L, ReisR A, et al. Application of Wada’s group contribution method to the prediction of the speed of sound of biodiesel[J]. Energy & Fuels, 2013, 27(3): 1365-1370.
|
14 |
FreitasS V D, ÂSantos, MoitaM L C J, et al. Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels[J]. Fuel, 2013, 108: 840-845.
|
15 |
DaridonJ L, CoutinhoJ A P, NdiayeE H I, et al. Novel data and a group contribution method for the prediction of the speed of sound and isentropic compressibility of pure fatty acids methyl and ethyl esters[J]. Fuel, 2013, 105: 466-470.
|
16 |
GardasR L, CoutinhoJ A P. Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures[J]. Fluid Phase Equilibria, 2008, 263(1): 26-32.
|
17 |
PratasM J, FreitasS V D, OliveiraM B, et al. Biodiesel density: experimental measurements and prediction models[J]. Energy Fuels, 2011, 25(5): 2333-2340.
|
18 |
ElbroH S, FredenslundA, RasmussenP. Group contribution method for the prediction of liquid densities as function of temperature for solvents, oligomers, and polymers[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2576-2582.
|
19 |
PrietoN M C T, FerreiraA G M, PortugalA T G, et al. Correlation and prediction of biodiesel density for extended ranges of temperature and pressure[J]. Fuel, 2015, 141: 23-38.
|