CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4635-4644.DOI: 10.11949/0438-1157.20190690
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jinyu WANG(),Huaizhi ZHU,Zewen AN,Jian GONG,Cuiping WANG()
Received:
2019-06-19
Revised:
2019-09-30
Online:
2019-12-05
Published:
2019-12-05
Contact:
Cuiping WANG
通讯作者:
王翠苹
作者简介:
王金玉(1994—),男,硕士研究生,基金资助:
CLC Number:
Jinyu WANG, Huaizhi ZHU, Zewen AN, Jian GONG, Cuiping WANG. Simulation and experimental study on modification of water and sulfur resistance by Mn-based denitration catalyst[J]. CIESC Journal, 2019, 70(12): 4635-4644.
王金玉, 朱怀志, 安泽文, 巩建, 王翠苹. Mn基脱硝催化剂抗水抗硫改性的模拟与实验研究[J]. 化工学报, 2019, 70(12): 4635-4644.
Add to citation manager EndNote|Ris|BibTeX
载体 | 吸附能/(kcal/mol) | 吸附后H—O键长/nm | 吸附后原子间距/nm |
---|---|---|---|
ZSM-5分子筛 | -9.743 | 0.1076 | 0.3789 |
γ-Al2O3 | -11.610 | 0.1022 | 0.3026 |
Table 1 Adsorption energy, bond length and atomic spacing of H2O molecules on different carrier models
载体 | 吸附能/(kcal/mol) | 吸附后H—O键长/nm | 吸附后原子间距/nm |
---|---|---|---|
ZSM-5分子筛 | -9.743 | 0.1076 | 0.3789 |
γ-Al2O3 | -11.610 | 0.1022 | 0.3026 |
吸附构型 | H2O分子在β-MnO2(0 0 1)上的吸附能/(kcal/mol) | H2O分子在β-MnO2(+Ce)上的吸附能/(kcal/mol) |
---|---|---|
H2O分子中H吸附到β-MnO2的Mn | -6.577 | -3.857 |
H2O分子中H吸附到β-MnO2的O | -7.943 | -5.335 |
H2O分子中O吸附到β-MnO2的Mn | -10.982 | -7.396 |
H2O分子中O吸附到β-MnO2的O | -6.044 | -4.769 |
Table 2 Adsorption energy of different adsorption configurations of H2O molecules on surface of different active components
吸附构型 | H2O分子在β-MnO2(0 0 1)上的吸附能/(kcal/mol) | H2O分子在β-MnO2(+Ce)上的吸附能/(kcal/mol) |
---|---|---|
H2O分子中H吸附到β-MnO2的Mn | -6.577 | -3.857 |
H2O分子中H吸附到β-MnO2的O | -7.943 | -5.335 |
H2O分子中O吸附到β-MnO2的Mn | -10.982 | -7.396 |
H2O分子中O吸附到β-MnO2的O | -6.044 | -4.769 |
活性组分类型 | 反应活化能/(kcal/mol) |
---|---|
β-MnO2(0 0 1) | 15.473 |
β-MnO2(+Ce) | 33.581 |
Table 3 Reaction activation energy of SO2 molecule and different active components
活性组分类型 | 反应活化能/(kcal/mol) |
---|---|
β-MnO2(0 0 1) | 15.473 |
β-MnO2(+Ce) | 33.581 |
催化剂类型 | 比表面积/ (m2/g) | 孔容×102/ (cm3/g) | 平均孔径 /nm |
---|---|---|---|
Mn-Fe/γ-Al2O3(反应前) | 129 | 20 | 6.9 |
Mn-Fe/γ-Al2O3(反应后) | 115 | 18.1 | 5.8 |
Mn-Fe-Ce/ZSM-5(反应前) | 308 | 10 | 5 |
Mn-Fe-Ce/ZSM-5(反应后) | 303 | 9.4 | 4.7 |
Table 4 Physical properties of Mn-Fe-Ce/ZSM-5 and Mn-Fe/γ-Al2O3 catalysts before and after reaction
催化剂类型 | 比表面积/ (m2/g) | 孔容×102/ (cm3/g) | 平均孔径 /nm |
---|---|---|---|
Mn-Fe/γ-Al2O3(反应前) | 129 | 20 | 6.9 |
Mn-Fe/γ-Al2O3(反应后) | 115 | 18.1 | 5.8 |
Mn-Fe-Ce/ZSM-5(反应前) | 308 | 10 | 5 |
Mn-Fe-Ce/ZSM-5(反应后) | 303 | 9.4 | 4.7 |
1 | Miroslav R . Reduction of nitrogen oxides in flue gases[J]. Environmental Pollution, 1998, 102(1): 685-689. |
2 | 张楚莹, 王书肖, 邢佳, 等 . 中国能源相关的氮氧化物排放现状与发展趋势分析[J]. 环境科学学报, 2015, 28(12): 2470-2479. |
Zhang C Y , Wang S X , Xing J , et al . Current status and future projections of NO x emissions from energy related in dustries in China[J]. Acta Scientiae Circumstantiae, 2015, 28(12): 2470-2479. | |
3 | Xue Y , Tian H , Yan J , et al . Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China[J]. Environmental Pollution, 2016, 213: 717-726. |
4 | Chiu C H , Hsi, H C, Lin H P , et al . Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of HgO and NO[J]. Journal of Hazardous Materials, 2015, 291: 1-8. |
5 | Wang X , Li Y J , Shi J W , et al . Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor[J]. Fuel Processing Technology, 2018, 180: 75-86. |
6 | Liu Z , Woo S I . Recent advances in catalytic DeNO x science and technology[J]. Catalysis Reviews, 2006, 48(1): 43-89. |
7 | 黄海凤, 张峰, 卢晗锋, 等 . 制备方法对低温NH3-SCR脱硝催化剂MnO x /TiO2结构与性能的影响[J]. 化工学报, 2010, 61(1): 80-85. |
Huang H F , Zhang F , Lu H F , et al . Effect of preparation methods on structures and performance of MnO x /TiO2 catalyst for low-temperature NH3-SCR[J]. CIESC Journal, 2010, 61(1): 80-85. | |
8 | Qi G , Yang R T . Performance and kinetics study for low-temperature SCR of NO with NH3 over MnO x -CeO2 catalyst[J]. Journal of Catalysis, 2003, 217(2): 434-441. |
9 | Muniz J , Marban G , Fuertes A B . Low temperature selective catalytic reduction of NO over modified activated carbon fibers[J]. Applied Catalysis B: Environmental, 2000, 27: 27-36. |
10 | Lei Z , Liu X , Jia M . Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalys[J]. Energy & Fuels, 2009, 23: 6146-6151. |
11 | Shi J , Zhang Z H , Chen M X , et al . Promotion effect of tungsten and iron co-addition on the catalytic performance of MnO x /TiO2 for NH3-SCR of NO x [J]. Fuel, 2017, 210(15): 783-789. |
12 | Nam K B , Kwon D W , Hong S C . DRIFT study on promotion effects of tungsten-modified Mn/Ce/Ti catalysts for the SCR reaction at low-temperature[J]. Applied Catalysis A: General, 2017, 542: 55-62. |
13 | 廖永进, 张亚平, 余岳溪, 等 . MnO x /WO3/TiO2低温选择性催化还原NO x 机理的原位红外研究[J]. 化工学报, 2016, 67(12): 5031-5039. |
Liao Y J , Zhang Y P , Yu Y X , et al . In situ FT-IR studies on low temperature NH3-SCR mechanism of NO x over MnO x /WO3/TiO2 catalyst[J]. CIESC Journal, 2016, 67(12): 5031-5039. | |
14 | Wu Z B , Jiang B Q , Liu Y , et al . Experimental study on a low-temperature SCR catalyst based on MnO x /TiO2 prepared by sol-gel method[J]. Journal of Hazardous Materials, 2007, 145: 488-94. |
15 | Jiang S Y , Zhou R X . Ce doping effect on performance of the Fe/β catalyst for NO x , reduction by NH3 [J]. Fuel Processing Technology, 2015, 133: 220-226. |
16 | Huang T J , Zhang Y P , Zhuang K , et al . Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NO x [J]. Journal of Fuel Chemistry & Technology, 2018, 46(3): 319-327. |
17 | Chen X , Wang P , Fang P , et al . Tuning the property of Mn-Ce composite oxides by titanate nanotubes to improve the activity selectivity and SO2/H2O tolerance in middle temperature NH3-SCR reaction[J]. Fuel Processing Technology, 2017, 167: 221-228. |
18 | Jiang B Q , Wu Z B , Liu Y , et al . DRIFT Study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2 [J]. Journal of Physical Chemistry C, 2010, 114(11): 4961-4965. |
19 | Shen B X , Liu T . Deactivation of MnO x -CeO x /ACF catalysts for low temperature NH3-SCR in the presence of SO2 [J]. Acta Physico-Chimica Sinica, 2010, 26(11): 3009-3016. |
20 | Phil H H , Reddy M P , Kumar P A , et al . SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NO x at low temperatures[J]. Applied Catalysis B: Environmental, 2008, 78(3): 301-308. |
21 | Li Y , Han X , et al . Role of CTAB in the improved H2O resistance for selective catalytic reduction of NO with NH3 over iron titanium catalyst[J]. Chemical Engineering Journal, 2018, 347(1): 313-321. |
22 | Park T S , Jeong S K , Hong S H , et al . Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Ind. Eng. Chem. Res., 2001, 40(21): 4491-4495. |
23 | 刘亭 . 锰铈基低温选择性催化还原(SCR)脱硝催化剂的研究[D]. 天津: 南开大学, 2011. |
Liu T . Study on manganese sulfhydryl group low temperature selective catalytic reduction (SCR) denitration catalyst[D]. Tianjin: Nankai University, 2011. | |
24 | Kijlstra W S , Biervliet M , Poels E K , et al . Deactivation by SO2 of MnO x /Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 1998, 16(4): 327-337. |
25 | 孙克勤, 钟秦, 黄丽娜 . SCR钒基催化剂吸附氨和水的密度泛函研究[J]. 环境化学, 2008, 27(1): 33-38. |
Sun K Q , Zhong Q , Huang L N . DFT Study of ammonia and water adsorption on vanadia-based catalysts catalysts for SCR reaction[J]. Environmental Chemistry, 2008, 27(1): 33-38. | |
26 | 程浩 . 铈掺杂对铜基氧载体释氧性能以及CO化学链燃烧影响的研究[D]. 武汉: 华中科技大学, 2016. |
Cheng H . Study of the influence of Ce-doping on the oxygen releasing properties of copper based oxygen carrier and CO chemical looping combustion[D].Wuhan: Huazhong University of Science and Technology, 2016. | |
27 | 王雪冲 . 碱土金属对Ce基催化剂SCR烟气脱硝性能的影响研究[D]. 北京: 中国石油大学, 2016. |
Wang X C . The effect of alkaline earth metals on Ce based catalyst for selective catalytic reduction of NO[D]. Beijing: China University of Petroleum, 2016. | |
28 | Reddy B M , Lakshmanan P , Khan A , et al . Structural characterization of CeO2-ZrO2/TiO2 and V2O5/CeO2-ZrO2/TiO2 mixed oxide catalysts by XRD, Raman spectroscopy, HREM, and other techniques[J]. Journal of Physical Chemistry B, 2005, 109(5): 1781. |
29 | Luo M , Chen J , Chen L , et al . Structure and redox properties of Ce x Ti1- x O2 solid solution[J]. Chem. Mater., 2001, 13(1): 197-202. |
30 | Chen L , Weng D , Wang J , et al . Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions[J]. Chinese Journal of Catalysis, 2018, 39(11): 1804-1813. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[7] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[8] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[9] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[12] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[13] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[14] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
[15] | Rui WANG, Ying REN, Wei CHEN, Yongsheng HAN. Molecular dynamics simulation on the dynamic structure of icing interface [J]. CIESC Journal, 2022, 73(3): 1315-1323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||