CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 526-534.DOI: 10.11949/0438-1157.20190738
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2019-07-01
Revised:
2019-12-04
Online:
2020-02-05
Published:
2020-02-05
Contact:
Kai WANG
通讯作者:
王凯
作者简介:
张皓(1994—),男,硕士研究生,基金资助:
CLC Number:
Hao ZHANG, Kai WANG. Microfluidic droplet coalescence study via microscopic image recognition[J]. CIESC Journal, 2020, 71(2): 526-534.
张皓, 王凯. 基于显微图像识别的微流控液滴聚并研究[J]. 化工学报, 2020, 71(2): 526-534.
实验体系 | 黏度/(mPa·s) | 密度/(g·cm-3) | 界面张力/(mN·m-1) |
---|---|---|---|
正辛醇 | 7.03 | 0.819 | 7.55 |
0.05% SiO2溶液 | 7.18 | 0.821 | 7.61 |
0.10% SiO2溶液 | 7.22 | 0.833 | 7.58 |
Table 1 Physical properties of working systems
实验体系 | 黏度/(mPa·s) | 密度/(g·cm-3) | 界面张力/(mN·m-1) |
---|---|---|---|
正辛醇 | 7.03 | 0.819 | 7.55 |
0.05% SiO2溶液 | 7.18 | 0.821 | 7.61 |
0.10% SiO2溶液 | 7.22 | 0.833 | 7.58 |
颗粒含量/% | 流量Qc1/ (μl·min-1) | 流量Qd/ (μl·min-1) | 流量Qc2/ (μl·min-1) | 液滴投影面积 S /mm2 | 液膜排空时间 td/s | 液滴接触点位置 x /mm |
---|---|---|---|---|---|---|
0 0 0 | 10 | 3 | 0 | 0.20 ~ 0.22 | 0.121 ± 0.031 | 0.42 ~ 0.43 |
10 | 4 | 0 | 0.20 ~ 0.22 | 0.120 ± 0.033 | 0.40 ~ 0.42 | |
10 | 5 | 0 | 0.23 ~ 0.25 | 0.132 ± 0.020 | 0.36 ~ 0.37 | |
0.05 0.05 | 20 | 10 | 0 | 0.22 ~ 0.25 | 0.103 ± 0.041 | 0.42 ~ 0.43 |
20 | 10 | 1 | 0.22 ~ 0.25 | 0.130 ± 0.052 | 0.37 ~ 0.39 | |
0.10 0.10 | 10 | 5 | 0 | 0.25 ~ 0.26 | 0.181 ± 0.076 | 0.47 ~ 0.48 |
20 | 10 | 0 | 0.23 ~ 0.24 | 0.177 ± 0.066 | 0.40 ~ 0.41 |
Table 2 Analysis results of liquid film drainage time
颗粒含量/% | 流量Qc1/ (μl·min-1) | 流量Qd/ (μl·min-1) | 流量Qc2/ (μl·min-1) | 液滴投影面积 S /mm2 | 液膜排空时间 td/s | 液滴接触点位置 x /mm |
---|---|---|---|---|---|---|
0 0 0 | 10 | 3 | 0 | 0.20 ~ 0.22 | 0.121 ± 0.031 | 0.42 ~ 0.43 |
10 | 4 | 0 | 0.20 ~ 0.22 | 0.120 ± 0.033 | 0.40 ~ 0.42 | |
10 | 5 | 0 | 0.23 ~ 0.25 | 0.132 ± 0.020 | 0.36 ~ 0.37 | |
0.05 0.05 | 20 | 10 | 0 | 0.22 ~ 0.25 | 0.103 ± 0.041 | 0.42 ~ 0.43 |
20 | 10 | 1 | 0.22 ~ 0.25 | 0.130 ± 0.052 | 0.37 ~ 0.39 | |
0.10 0.10 | 10 | 5 | 0 | 0.25 ~ 0.26 | 0.181 ± 0.076 | 0.47 ~ 0.48 |
20 | 10 | 0 | 0.23 ~ 0.24 | 0.177 ± 0.066 | 0.40 ~ 0.41 |
1 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
2 | Kockmann N. Modular equipment for chemical process development and small-scale production in multipurpose plants[J]. Chembioeng Reviews, 2016, 3(1): 5-15. |
3 | Rossetti I, Compagnoni M. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry[J]. Chemical Engineering Journal, 2016, 296: 56-70. |
4 | Wang K, Luo G. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
5 | Kjeang E, Djilali N, Sinton D. Microfluidic fuel cells: a review[J]. Journal of Power Sources, 2009, 186(2): 353-369. |
6 | Anna S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48: 285-309. |
7 | Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
8 | Koster S. Microfluidics—from fundamental research to industrial applications[J]. Journal of Physics D: Applied Physics, 2013, 46: 110301. |
9 | Yamada K, Henares T G, Suzuki K, et al. Paper-based inkjet-printed microfluidic analytical devices[J]. Angewandte Chemie International Edition, 2015, 54(18): 5294-5310. |
10 | Shui L, Hayes R A, Jin M, et al. Microfluidics for electronic paper-like displays[J]. Lab on a Chip, 2014, 14(14): 2374-2384. |
11 | Waheed S, Cabot Canyelles J, Macdonald N, et al. 3D printed microfluidic devices: enablers and barriers[J]. Lab on a Chip, 2016, 16(11): 1993-2013. |
12 | Wang K, Li L, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627. |
13 | Wang J, Song Y. Microfluidic synthesis of nanohybrids[J]. Small, 2017, 13: 160408418. |
14 | Kim H U, Choi D G, Roh Y H, et al. Microfluidic synthesis of pH-sensitive multicompartmental microparticles for multimodulated drug release[J]. Small, 2016, 12(25): 3463-3470. |
15 | Atobe M, Tateno H, Matsumura Y. Applications of flow microreactors in electrosynthetic processes[J]. Chemical Reviews, 2018, 118: 4541-4572 |
16 | Yao C, Liu Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357. |
17 | Li Y K, Wang K, Xu J H, et al. A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188. |
18 | Li Z, Mak S Y, Sauret A, et al. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy[J]. Lab on a Chip, 2014, 14(4): 744-749. |
19 | Saqib M, Sahinoglu O B, Erdem E Y. Alternating droplet formation by using tapered channel geometry[J]. Scientific Reports, 2018, 8: 1606. |
20 | Wu Z, Cao Z, Sundén B. Liquid-liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions[J]. Chemical Engineering Science, 2017, 174: 56-66. |
21 | Galindo-Rosales F J, Alves M A, Oliveira M. Microdevices for extensional rheometry of low viscosity elastic liquids: a review[J]. Microfluidics and Nanofluidics, 2013, 14(1/2): 1-19. |
22 | Seemann R, Brinkmann M, Pfohl T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2012, 75: 0166011. |
23 | Wei W, Guo S, Wu F, et al. Image processing-based measurement of volume for droplets in the microfluidic system[C]// Complex Medical Engineering (CME), 2013 ICME International Conference on. IEEE, 2013: 518-522. |
24 | Basu A S. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab on a Chip, 2013, 13(10): 1892-1901. |
25 | Xu K, Tostado C P, Xu J H, et al. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device[J]. Lab on a Chip, 2014, 14(7): 1357-1366. |
26 | Liu Z, Cao R, Pang Y, et al. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2): 24. |
27 | Wu Y, Fu T, Zhu C, et al. Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing[J]. Microfluidics and Nanofluidics, 2014, 16(1/2): 275-286. |
28 | 王凯, 易诗婷, 周倩倩, 等. 微通道内纳米颗粒对液滴聚并的影响规律[J]. 化工学报, 2016, 67(2): 469-475. |
Wang K, Yi S T, Zhou Q Q, et al. Effect of nano-particles on droplet coalescence in microchannel device[J]. CIESC Journal, 2016, 67(2): 469-475. | |
29 | Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169(SI): 18-33. |
30 | Zhou Q Q, Sun Y, Yi S T, et al. Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment[J]. Soft Matter, 2016, 12(6): 1674-1682. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[3] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[4] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[5] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[6] | Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles [J]. CIESC Journal, 2022, 73(6): 2306-2317. |
[7] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[8] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
[9] | Rui YANG, Baojin ZHU, Chao LYU, Lei ZHANG, Yingsong XIAO. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow [J]. CIESC Journal, 2022, 73(10): 4389-4398. |
[10] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
[11] | Wei ZHAN, Xiyang LIU, Chunying ZHU, Youguang MA, Taotao FU. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels [J]. CIESC Journal, 2022, 73(1): 184-193. |
[12] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[13] | SONG Fenhong, WANG Wei, CHEN Qicheng, FAN Jing. Coalescence characteristics of the double droplets under electric field [J]. CIESC Journal, 2021, 72(S1): 371-381. |
[14] | ZHAO Junyi, XUE Shidong, HAN Jingkun, WEN Rongfu, LAN Zhong, HAO Tingting, MA Xuehu. Research progress of binary droplet collision behavior and regulation mechanism [J]. CIESC Journal, 2021, 72(5): 2354-2372. |
[15] | PENG Qi, JIA Li, DING Yi, ZHANG Yongxin, DANG Chao, YIN Liaofei. The effect of confined microstructures on the coalescence-induced droplet jumping with low surface tension [J]. CIESC Journal, 2021, 72(4): 1920-1929. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 801
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 615
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||