CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1080-1087.DOI: 10.11949/0438-1157.20191495
• Process system engineering • Previous Articles Next Articles
Zhiqiang GENG1,2(),Rongfu ZENG1,2,Yuan XU1,2,Yongming HAN1,2(),Xiangbai GU1,2,3
Received:
2019-12-09
Revised:
2019-12-13
Online:
2020-03-05
Published:
2020-03-05
Contact:
Yongming HAN
耿志强1,2(),曾荣甫1,2,徐圆1,2,韩永明1,2(),顾祥柏1,2,3
通讯作者:
韩永明
作者简介:
耿志强基金资助:
CLC Number:
Zhiqiang GENG, Rongfu ZENG, Yuan XU, Yongming HAN, Xiangbai GU. Intrusion detection of industrial control system based on grey wolf optimization integrated random black hole[J]. CIESC Journal, 2020, 71(3): 1080-1087.
耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087.
Add to citation manager EndNote|Ris|BibTeX
函数 | 名称 | 变量定义域 | 维数 | 最优值 |
---|---|---|---|---|
f1 | Sphere | [-100,100] | 30 | 0 |
f2 | Schwefel’Problem 2.2.2 | [-10,10] | 30 | 0 |
f3 | Quadratic | [-1.28,1.28] | 30 | 0 |
f4 | Rastrigin | [-5.12,5.12] | 30 | 0 |
f5 | Ackley | [-32,32] | 30 | 0 |
f6 | Griewank | [-600,600] | 30 | 0 |
Table 1 Test function parameter table
函数 | 名称 | 变量定义域 | 维数 | 最优值 |
---|---|---|---|---|
f1 | Sphere | [-100,100] | 30 | 0 |
f2 | Schwefel’Problem 2.2.2 | [-10,10] | 30 | 0 |
f3 | Quadratic | [-1.28,1.28] | 30 | 0 |
f4 | Rastrigin | [-5.12,5.12] | 30 | 0 |
f5 | Ackley | [-32,32] | 30 | 0 |
f6 | Griewank | [-600,600] | 30 | 0 |
函数 | 参数 |
---|---|
PSO | |
RBHPSO | |
GWO | None |
SFGWO | Bound=0.618 |
RBHGWO | p =0.1;R =0.01 |
Table 2 Algorithm parameter table
函数 | 参数 |
---|---|
PSO | |
RBHPSO | |
GWO | None |
SFGWO | Bound=0.618 |
RBHGWO | p =0.1;R =0.01 |
算法 | f1 | f2 | f3 | f4 | f5 | f6 |
---|---|---|---|---|---|---|
PSO | 0.82313 | 2.3232 | 0.56841 | 29.221 | 12.084 | 21.476 |
RBHPSO | 0.17903 | 1.2065 | 3.2471×10-3 | 55.896 | 3.0695 | 1.5907×10-2 |
GWO | 3.7862×10-22 | 3.6166×10-15 | 1.9252×10-3 | 3.1175 | 2.3667×10-13 | 1.9669×10-3 |
SFGWO | 1.3674×10-27 | 1.4859×10-18 | 1.2350×10-3 | 2.1013 | 5.9153×10-14 | ×10-11 |
RBHGWO | 1.2212×10-48 | 2.4761×10-29 | 8.3071×10-4 | 0 | 2.2678×10-14 | 0 |
Table 3 Average of experimental results
算法 | f1 | f2 | f3 | f4 | f5 | f6 |
---|---|---|---|---|---|---|
PSO | 0.82313 | 2.3232 | 0.56841 | 29.221 | 12.084 | 21.476 |
RBHPSO | 0.17903 | 1.2065 | 3.2471×10-3 | 55.896 | 3.0695 | 1.5907×10-2 |
GWO | 3.7862×10-22 | 3.6166×10-15 | 1.9252×10-3 | 3.1175 | 2.3667×10-13 | 1.9669×10-3 |
SFGWO | 1.3674×10-27 | 1.4859×10-18 | 1.2350×10-3 | 2.1013 | 5.9153×10-14 | ×10-11 |
RBHGWO | 1.2212×10-48 | 2.4761×10-29 | 8.3071×10-4 | 0 | 2.2678×10-14 | 0 |
算法 | f1 | f2 | f3 | f4 | f5 | f6 |
---|---|---|---|---|---|---|
PSO | 1.1506 | 0.78267 | 2.4520 | 67.834 | 7.0350 | 3.8529 |
RBHPSO | 5.7589×10-2 | 2.7347 | 1.8095×10-3 | 11.429 | 0.64447 | 1.3769×10-2 |
GWO | 3.5463×10-22 | 3.9915×10-15 | 1.1116×10-3 | 2.1504 | 6.6311×10-14 | 5.2292×10-3 |
SFGWO | 1.7031×10-27 | 1.1864×10-18 | 5.9602×10-4 | 3.1738 | 8.1122×10-15 | 3.6160×10-11 |
RBHGWO | 2.7222×10-48 | 2.8038×10-29 | 7.7627×10-4 | 0 | 5.2557×10-15 | 0 |
Table 4 Standard deviation of experimental results
算法 | f1 | f2 | f3 | f4 | f5 | f6 |
---|---|---|---|---|---|---|
PSO | 1.1506 | 0.78267 | 2.4520 | 67.834 | 7.0350 | 3.8529 |
RBHPSO | 5.7589×10-2 | 2.7347 | 1.8095×10-3 | 11.429 | 0.64447 | 1.3769×10-2 |
GWO | 3.5463×10-22 | 3.9915×10-15 | 1.1116×10-3 | 2.1504 | 6.6311×10-14 | 5.2292×10-3 |
SFGWO | 1.7031×10-27 | 1.1864×10-18 | 5.9602×10-4 | 3.1738 | 8.1122×10-15 | 3.6160×10-11 |
RBHGWO | 2.7222×10-48 | 2.8038×10-29 | 7.7627×10-4 | 0 | 5.2557×10-15 | 0 |
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.700901 | 0.583810 | 0.659407 | 0.034861 | 1059.4 |
RBHPSO | 0.750727 | 0.619167 | 0.681132 | 0.027943 | 1171.6 |
GWO | 0.758889 | 0.677368 | 0.739011 | 0.019231 | 727.4 |
SFGWO | 0.766481 | 0.728148 | 0.743300 | 0.011645 | 813.7 |
RBHGWO | 0.774815 | 0.754815 | 0.764130 | 0.006621 | 692.1 |
Table 5 Experimental results of KNN classifier
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.700901 | 0.583810 | 0.659407 | 0.034861 | 1059.4 |
RBHPSO | 0.750727 | 0.619167 | 0.681132 | 0.027943 | 1171.6 |
GWO | 0.758889 | 0.677368 | 0.739011 | 0.019231 | 727.4 |
SFGWO | 0.766481 | 0.728148 | 0.743300 | 0.011645 | 813.7 |
RBHGWO | 0.774815 | 0.754815 | 0.764130 | 0.006621 | 692.1 |
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.727593 | 0.544355 | 0.658435 | 0.051886 | 144.1 |
RBHPSO | 0.722364 | 0.607692 | 0.681142 | 0.038472 | 173.5 |
GWO | 0.757778 | 0.701273 | 0.741643 | 0.015378 | 122.1 |
SFGWO | 0.767407 | 0.738333 | 0.752955 | 0.009589 | 167.4 |
RBHGWO | 0.785926 | 0.767222 | 0.776455 | 0.006770 | 121.4 |
Table 6 Experimental results of NBC classifier
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.727593 | 0.544355 | 0.658435 | 0.051886 | 144.1 |
RBHPSO | 0.722364 | 0.607692 | 0.681142 | 0.038472 | 173.5 |
GWO | 0.757778 | 0.701273 | 0.741643 | 0.015378 | 122.1 |
SFGWO | 0.767407 | 0.738333 | 0.752955 | 0.009589 | 167.4 |
RBHGWO | 0.785926 | 0.767222 | 0.776455 | 0.006770 | 121.4 |
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.692807 | 0.583200 | 0.639045 | 0.030142 | 286.5 |
RBHPSO | 0.777658 | 0.630508 | 0.693065 | 0.047811 | 256.8 |
GWO | 0.801481 | 0.739107 | 0.783442 | 0.017398 | 214.9 |
SFGWO | 0.806667 | 0.768519 | 0.788683 | 0.012241 | 372.6 |
RBHGWO | 0.847778 | 0.820556 | 0.830486 | 0.010125 | 221.9 |
Table 7 Experimental results of DT classifier
算法 | 最优适应度值 | 最差适应度值 | 平均适应度值 | 标准差 | 运行 时间/s |
---|---|---|---|---|---|
PSO | 0.692807 | 0.583200 | 0.639045 | 0.030142 | 286.5 |
RBHPSO | 0.777658 | 0.630508 | 0.693065 | 0.047811 | 256.8 |
GWO | 0.801481 | 0.739107 | 0.783442 | 0.017398 | 214.9 |
SFGWO | 0.806667 | 0.768519 | 0.788683 | 0.012241 | 372.6 |
RBHGWO | 0.847778 | 0.820556 | 0.830486 | 0.010125 | 221.9 |
1 | Serpanos D.Secure and resilient industrial control systems [J].IEEE Design & Test,2018,35(1):90-94. |
2 | Paridari K,Mahony,Mady A E,et al.A framework for at-tack-resilient industrial control systems: attack detection and controller reconfiguration [J].Proceedings of the IEEE,2018,106(1):113-128. |
3 | Geng Z Q,Chen N,Han Y,et al.An improved intelligent early warning method based on MWSPCA and its application in complex chemical processes [J].The Canadian Journal of Chemical Engineering,2019,doi.org/0.1002/cjce.23674. |
4 | Geng Z Q,Liu F F,Han Y M,et al.Fault diagnosis of chemical processes based on a novel adaptive kernel principal component analysis[C]//12th Asian Control Conference.Fukuoka,2019:1495-1500 |
5 | Chung M Y,Ahn W,Min B G,et al.An analytical method for developing appropriate protection profiles of Instrumentation & Control System for nuclear power plants [J].Journal of Supercomputing,2018,74(3):1378-1393. |
6 | Wu M T,Song Z Y,Moon Y B.Detecting cyber-physical attacks in cyber manufacturing systems with machine learning methods [J].Journal of Intelligent Manufacturing,2019,30(3):1-13. |
7 | Yılmaz E N,Gönen S.Attack detection/prevention system against cyber-attack in industrial control systems [J].Computers & Security,2018,77:94-105. |
8 | Li J,Zha Y.CMA: a reconfigurable complex matching accelerator for wire-speed network intrusion detection [J].IEEE Computer Architecture Letters,2018,17(1):33-36. |
9 | Kasongo S M,Sun Y X.A deep learning method with filter based feature engineering for wireless intrusion detection system [J].IEEE Access,2019,7:38597-38607. |
10 | Wang N,Du X H,Wang W J.Building a cloud IDS using an efficient feature selection method and SVM [J].IEEE Access,2019,7:1345-1354. |
11 | Acharya N,Singh S.An IWD-based feature selection method for intrusion detection system [J].Soft Computing,2018,22(13):4407-4416. |
12 | Zhou T,Lu H L,Wang W W,et al.GA-SVM based feature selection and parameter optimization in hospitalization expense modeling [J].Applied Soft Computing,2019,75:323-332. |
13 | Tao P Y,Sun Z,Sun Z X.An improved intrusion detection algorithm based on GA and SVM [J].IEEE Access,2018,6:1. |
14 | Kushwaha N,Pant M.Link based BPSO for feature selection in big data text clustering [J].Future Generation Computer Systems,2018,82:190-199. |
15 | Kashef S,Nezamabadi-pour H.An advanced ACO algorithm for feature subset selection [J].Neurocomputing,2015,147:271-279. |
16 | Zawbaa,Hossam M,Emary E,et al.Feature selection approach based on moth-flame optimization algorithm [C]//2016 IEEE Congress on Evolutionary Computation,2015:4612-4617 |
17 | Milan T,Nebojsa B.Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems [J].Neurocomputing,2014,143:197-207. |
18 | Mirjalili S,Lewis A.Grey wolf optimizer [J].Advances in Engineering Software,2014,69(3):46-61. |
19 | Zhou Z Y,Zhang R X,Wang Y M,et al.Color difference classification based on optimization support vector machine of improved grey wolf algorithm [J].Optik,2018,170:17-29. |
20 | Li S Y,Wang S M,Wang P F,et al.An improved grey wolf optimizer algorithm for the inversion of geoelectrical data [J].Acta Geophysica,2018,66(4):607-621. |
21 | Wu T B,Gui W H,Yang C H,et al.Improved grey wolf optimization algorithm with logarithm function describing convergence factor and its application [J].Journal of Central South University (Science and Technology),2018,49(4):857-864. |
22 | Zhang J Q,Liu K,Tan Y,et al.Random black hole particle swarm optimization and its application [C]//2008 International Conference on Neural Net-Works and Signal Processing,2007,1/2:359-365. |
23 | Ji Z W,Hu M,Yin J X.A survey of feature selection algorithm [J].Electronic Design Engineering,2011,9:46-51. |
24 | Chen B S,Cheng Y M,Lee C H.A genetic approach to mixed H2/H∞ optimal PID control [J].IEEE Control Systems,1995,15(5):51-60. |
25 | Downs J J,Vogel E F.A plant-wide industrial process control problem [J].Computers and Chemical Engineering,1993,17(3):245-255. |
26 | Ricker N L.Tennessee Eastman challenge archive [EB/OL]. [2017-05-31]. http: //depts.washington.edu/control/LARRY/TE/download.html. |
27 | Ricker N L.Decentralized control of the Tennessee Eastman challenge process [J].Journal of Process Control,1996,6(4):205-221. |
28 | Lv X F,Xie Y B.An anomaly detection method for industrial control systemsvia state transition graph [J].Acta Automatica Sinica,2018,44(9):1662-1671. |
29 | Peterson L.K-nearest neighbor [J].Scholarpedia,2009,4(2):1883. |
30 | Langley P,Thompson K.An analysis of Bayesian classifiers [C]//Proceedings of the 10th National Conference on Artificial Intelligence,San Jose, CA,1992:223-228. |
31 | Breiman L,Friedman J,Olshen R.Classification and Regression Trees [M].California:Wadsworth Belement,1984. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||