CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2492-2509.DOI: 10.11949/0438-1157.20200106
• Reviews and monographs • Previous Articles Next Articles
Lingyu DONG(),Rui GE,Yafei YUAN,Songyuan TANG,Guangping HAO(),Anhui LU
Received:
2020-02-03
Revised:
2020-03-31
Online:
2020-06-05
Published:
2020-06-05
Contact:
Guangping HAO
通讯作者:
郝广平
作者简介:
董灵玉(1997—),女,硕士研究生,基金资助:
CLC Number:
Lingyu DONG, Rui GE, Yafei YUAN, Songyuan TANG, Guangping HAO, Anhui LU. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials[J]. CIESC Journal, 2020, 71(6): 2492-2509.
董灵玉, 葛睿, 原亚飞, 唐宋元, 郝广平, 陆安慧. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 Model and a schematic local structure(a), and catalyst mass-normalized CO partial currents(mass activity) vs applied potential compared to state-of-art Au catalysts(b) and experimental correlation to simulations(c) for M–N–C catalysts
Fig.9 Free energies for conversion of *CO to CH3OH on Cu-N4 structure(orange, gray, red and light blue spheres stand for Cu, C, O, and H atoms, respectively)
1 | Roncancio R, Ulcay M S, Arango J E, et al. Experimental study of CO2 corn stover char gasification using iron nitrate as a catalyst under a high-pressure environment[J]. Fuel, 2020, 267: 117237. |
2 | Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
3 | 杨东明, 梁相程. CO2绿色利用技术[J]. 当代化工, 2019, 48(8): 1838-1841. |
Yang D M, Liang X C. Green utilization technology of CO2[J]. Contemporary Chemical Industry, 2019, 48(8): 1838-1841. | |
4 | Hossain M N, Wen J, Chen A. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide[J]. Scientific Reports, 2017, 7(1): 3184. |
5 | Mariano R G, McKelvey K, White H S, et al. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations[J]. Science, 2017, 358(6367): 1187-1192. |
6 | Gao D, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. |
7 | Wang W, Ning H, Yang Z, et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4[J]. Electrochimica Acta, 2019, 306: 360-365. |
8 | Gao D, Zhang Y, Zhou Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655. |
9 | Lin S, Diercks C S, Zhang Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
10 | Diercks C S, Lin S, Kornienko N, et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction[J]. Journal of the American Chemical Society, 2018, 140(3): 1116-1122. |
11 | Kornienko N, Zhao Y, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135. |
12 | Angamuthu R, Byers P, Lutz M, et al. Electrocatalytic CO2 conversion to oxalate by a copper complex[J]. Science, 2010, 327(5963): 313-315. |
13 | Costentin C, Drouet S, Robert M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst[J]. Science, 2012, 338(6103): 90-94. |
14 | Ye Y, Cai F, Li H, et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction[J]. Nano Energy, 2017, 38: 281-289. |
15 | Pan F, Zhao H, Deng W, et al. A novel N, Fe-decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction[J]. Electrochimica Acta, 2018, 273: 154-161. |
16 | Ning H, Wang X, Wang W, et al. Cubic Cu2O on nitrogen-doped carbon shell for electrocatalytic CO2 reduction to C2H4[J]. Carbon, 2019, 146: 218-223. |
17 | Zhang F, Zhang H, Liu Z. Recent advances on electrochemical reduction of CO2[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 77-84. |
18 | Zhang J, Terrones M, Park C R, et al. Carbon science in 2016: status, challenges and perspectives[J]. Carbon, 2016, 98(70): 708-732. |
19 | 王同洲, 王鸿. 多孔碳材料的研究进展[J]. 中国科学: 化学, 2019, 49(5): 729-740. |
Wang T Z, Wang H. Research progress of porous carbon materials[J]. Scientia Sinica Chimica, 2019, 49(5): 729-740. | |
20 | Zhang H, Liu Q, Fang Y, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials, 2019, 31(44): 1904948. |
21 | Zhu Q, Wang X, Chen D, et al. Highly porous carbon xerogels doped with cuprous chloride for effective CO adsorption[J]. ACS Omega, 2019, 4(4): 6138-6143. |
22 | 郝广平, 李文翠, 陆安慧. 纳米结构多孔固体在二氧化碳吸附分离中的应用[J]. 化工进展, 2012, 31(11): 2493-2510. |
Hao G P, Li W C, Lu A H. Application of nanostructured porous solids in carbon dioxide adsorption and separation[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2493-2510. | |
23 | Wang R T, Lang J W, Yan X B. Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes[J]. Science China Chemistry, 2014, 57(11): 1570-1578. |
24 | Chen Y, Li J, Yue G, et al. Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries[J]. Nano-Micro Letters, 2017, 9(3): 82-92. |
25 | Matos I, Bernardo M, Fonseca I. Porous carbon: a versatile material for catalysis[J]. Catalysis Today, 2017, 285: 194-203. |
26 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
27 | Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
28 | Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
29 | Ma Z, Kyotani T, Tomita A. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite[J]. Chemical Communications, 2000, 23: 2365-2366. |
30 | Braun E, Lee Y, Moosavi S M, et al. Generating carbon schwarzites via zeolite-templating[J]. Proceedings of the National Academy of Sciences, 2018, 115(35): E8116-E8124. |
31 | Presser V, Heon M, Gogotsi Y. Carbide-derived carbons-from porous networks to nanotubes and graphene[J]. Adv. Funct. Mater., 2011, 21: 810-833. |
32 | Kim K, Lee T, Kwon Y, et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template[J]. Nature, 2016, 535: 131-135. |
33 | Oschatz M, Boukhalfa S, Nickel W, et al. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors[J]. Carbon, 2017, 113: 283-291. |
34 | Shao L, Sang Y, Huang J, et al. Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 1-14. |
35 | Lu A H, Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials[J]. Advanced Materials, 2006, 18: 1793. |
36 | Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 1-17. |
37 | Hursan D, Samu A A, Janovak L, et al. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes[J]. Joule, 2019, 3: 1719-1733. |
38 | Deng Y, Liu C, Yu T, et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chemistry of Materials, 2007, 19(13): 3271-3277. |
39 | Wang H, Jia J, Song P, et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery[J]. Angewandte Chemie International Edition, 2017, 56: 7847-7852. |
40 | Hao G P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie International Edition, 2015, 54: 1941-1945. |
41 | Hao G P, Sahraie N R, Zhang Q, et al. Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction[J]. Chemical Communications, 2015, 51: 17285-17288. |
42 | Hao G P, Zhang Q, Sin M, et al. Design of hierarchically porous carbons with interlinked hydrophilic and hydrophobic surface and their capacitive behavior[J]. Chemistry of Materials, 2016, 28: 8715-8725. |
43 | Zhang G R, Munoz M, Etzold B J M. Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55: 2257-2261. |
44 | Xu W, Lu Z, Sun X, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51: 1590-1598. |
45 | Li H, Xiao N, Wang Y, et al. Promoted electroreduction of CO2 with oxygen vacancies on plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A, 2020, 8(4): 1779-1786. |
46 | Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects[J]. Advanced Materials, 2017, 29(13): 1604103. |
47 | Liu X, Dai L. Carbon-based metal-free catalysts[J]. Nature Reviews Materials, 2016, 1: 16064. |
48 | Yan D, Li Y, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459. |
49 | Hao G P, Tang C, Zhang E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37): 1702829. |
50 | Zhong G, Wang H, Yu H, et al. Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction[J]. Electrochimica Acta, 2016, 190: 49-56. |
51 | Zhong G, Wang H, Yu H, et al. The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction[J]. Electrochemistry Communications, 2014, 40: 5-8. |
52 | Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834. |
53 | Zhang L, Xu Q, Niu J, et al. Role of lattice defects in catalytic activities of graphene clusters for fuel cells[J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16733-16743. |
54 | Sa Y J, Kim J H, Joo S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2019, 58: 1100-1105. |
55 | Hou Y, Wen Z, Cui S, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation[J]. Nano Letters, 2016, 16(4): 2268-2277. |
56 | Jiang Y, Yang L, Sun T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5: 6707-6712. |
57 | Roman D S, Krishnamurthy D, Garg R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis, 2020, 10(3): 1993-2008. |
58 | Florian B, Jani K, Arkady V K. Structural defects in graphene[J]. ACS Nano, 2011, 5(1): 26-41. |
59 | 黄秋玲. 掺杂/缺陷石墨烯的制备及其电催化性能研究[D]. 广州: 华南理工大学, 2019. |
Huang Q L. Preparation and electrocatalytic properties of doped/defective graphene[D]. Guangzhou: South China University of Technology, 2019. | |
60 | Antonietti M, Oschatz M. The concept of “noble, heteroatom-doped carbons” their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials[J]. Advanced Materials, 2018, 30(21): 1706836. |
61 | Li X X, Zhao Q S, Feng X, et al. Pyridinic nitrogen-doped graphene nanoshells boost the catalytic efficiency of palladium nanoparticles for the N-allylation reaction[J]. Chem. Sus. Chem., 2019, 12(4): 1-9. |
62 | Li S, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications-a review[J]. Journal of Materials Chemistry, 2016, 4(33): 12686-12713. |
63 | Jesica C Q, Esther B G, Francisco C M, et al. Mesoporous carbon nanospheres with improved conductivity for electro-catalytic reduction of O2 and CO2[J]. Carbon, 2019, 155: 88-99. |
64 | Chen Y, Zou L, Liu H, et al. Fe and N co-doped porous carbon nanospheres with high density of active sites for efficient CO2 electroreduction[J]. The Journal of Physical Chemistry C, 2019, 123(27): 16651-16659. |
65 | Wang S, Li W, Hao G, et al. Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry[J]. Journal of the American Chemical Society, 2011, 133(39): 15304-15307. |
66 | Wu J, Yadav R M, Liu M, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5364-5371. |
67 | Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol[J]. Journal of the American Chemical Society, 2019, 141(32): 12717-12723. |
68 | Zhang W, Zeng J, Liu H, et al. CoxNi1-x nanoalloys on N-doped carbon nanofibers: electronic regulation toward efficient electrochemical CO2 reduction[J]. Journal of Catalysis, 2019, 372: 277-286. |
69 | Zhou W, Shen H, Wang Q, et al. N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction[J]. Carbon, 2019, 152: 241-246. |
70 | Modi A, Bhaduri B, Verma N, et al. Facile one-step synthesis of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5172-5178. |
71 | Duan J, Chen S, Jaroniec M, et al. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5(9): 5207-5234. |
72 | Mao X, Kour G, Zhang L, et al. Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol[J]. Catalysis Science & Technology, 2019, 9(23): 6800-6807. |
73 | Zhang H, Li J, Xi S, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 131(42): 15013-15018. |
74 | Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903. |
75 | Gierszal K P, Jaroniec M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template[J]. Journal of the American Chemical Society, 2006, 128(31): 10026-10027. |
76 | Lu A H, Hao G P, Sun Q, et al. Chemical synthesis of carbon materials with intriguing nanostructure and morphology[J]. Macromolecular Chemistry and Physics, 2012, 213: 1107-1131. |
77 | Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388. |
78 | Sharma P P, Wu J, Yadav R M, et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity[J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705. |
79 | Varela A S, Sahraie N R, Steinberg J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015, 54(37): 10758-10762. |
80 | Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566. |
81 | Su D S, Zhang J, Frank B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. Chem. Sus. Chem., 2010, 3(2): 169-180. |
82 | Li Q, Cao R, Cho J, et al. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13568-13582. |
83 | Wu J, Sharifi T, Gao Y, et al. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals[J]. Advanced Materials, 2019, 31(13): 1804257. |
84 | Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857. |
85 | Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892. |
86 | Zhao L, He R, Rim K T, et al. Visualizing individual nitrogen dopants in monolayer graphene[J]. Science, 2011, 333(6045): 999-1003. |
87 | Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758. |
88 | Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017, 29(41): 1701784. |
89 | Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications, 2013, 4: 2819. |
90 | Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. Journal of the American Chemical Society, 2014, 136(22): 7845-7848. |
91 | Wu J, Yadav R M, Liu M, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5364-5371. |
92 | Liu Y, Chen S, Quan X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond[J]. Journal of the American Chemical Society, 2015, 137(36): 11631-11636. |
93 | Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates[J]. Nature Communications, 2016, 7: 13869. |
94 | Jhong H R M, Tornow C E, Smid B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. Chem. Sus. Chem., 2017, 10(6): 1094-1099. |
95 | Song Y, Chen W, Zhao C, et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10840-10844. |
96 | Zhang L, Niu J, Li M, et al. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3545-3553. |
97 | Pan F, Li B, Deng W, et al. Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition[J]. Applied Catalysis B: Environmental, 2019, 252: 240-249. |
98 | Sun Q, Li Z, Searles D J, et al. Charge-controlled switchable CO2 capture on boron nitride nanomaterials[J]. Journal of the American Chemical Society, 2013, 135(22): 8246-8253. |
99 | Sreekanth N, Nazrulla M A, Vineesh T V, et al. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate[J]. Chemical Communications, 2015, 51(89): 16061-16064. |
100 | Nakata K, Ozaki T, Terashima C, et al. High-yield electrochemical production of formaldehyde from CO2 and seawater[J]. Angewandte Chemie International Edition, 2014, 53(3): 871-874. |
101 | 张宇晶. 硼氮共掺杂纳米金刚石的制备及其电还原CO2性能研究[D]. 大连: 大连理工大学, 2016. |
Zhang Y J. Preparation of boron-nitrogen co-doped nanodiamonds and its electroreduction of CO2[D]. Dalian: Dalian University of Technology, 2016. | |
102 | Liu Y, Zhang Y, Cheng K, et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond[J]. Angewandte Chemie International Edition, 2017, 56(49): 15607-15611. |
103 | Liu T F, Ali S, Lian Z, et al. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of the bonding configuration of phosphorus[J]. Journal of Materials Chemistry A, 2018, 6(41): 19998-20004. |
104 | Varela A S, Ju W, Bagger A, et al. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts[J]. ACS Catalysis, 2019, 9(8): 7270-7284. |
105 | Yan C, Lin L, Wang G, et al. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction[J]. Chinese Journal of Catalysis, 2019, 40(1): 23-37. |
106 | Hu X M, Hval H H, Bjerglund E T, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts[J]. ACS Catalysis, 2018, 8(7): 6255-6264. |
107 | Pan F, Deng W, Justiniano C, et al. Identification of champion transition metals centers in metal and nitrogen-co-doped carbon catalysts for CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 226: 463-472. |
108 | Jiang K, Siahrostami S, Akey A J, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis[J]. Chem, 2017, 3(6): 950-960. |
109 | Wang X, Zhao Q, Yang B, et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO[J]. Journal of Materials Chemistry A, 2019, 7(44): 25191-25202. |
110 | Lei C, Wang Y, Hou Y, et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics[J]. Energy & Environmental Science, 2019, 12(1): 149-156. |
111 | Pérez-Rodríguez S, Pastor E, Lázaro M J. Noble metal-free catalysts supported on carbon for CO2 electrochemical reduction[J]. Journal of CO2 Utilization, 2017, 18: 41-52. |
112 | Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1): 944. |
113 | Zhang B, Zhang J, Shi J, et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction[J]. Nature Communications, 2019, 10(1): 1-8. |
114 | Genovese C, Schuster M E, Gibson E K, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon[J]. Nature Communications, 2018, 9(1): 935. |
115 | Pan F, Zhang H, Liu K, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4): 3116-3122. |
116 | Qu Y, Chen B, Li Z, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal[J]. Journal of the American Chemical Society, 2019, 141(11): 4505-4509. |
117 | Liu J. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2016, 7(1): 34-59. |
118 | Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J]. Nature Chemistry, 2019, 11(3): 222-228. |
119 | Yang H B, Hung S F, Liu S, et al. Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140. |
120 | Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol[J]. Journal of the American Chemical Society, 2019, 141(32): 12717-12723. |
121 | Wang M, Chen L, Lau T C, et al. A hybrid Co quaterpyridine complex/carbon nanotube catalytic material for CO2 reduction in water[J]. Angewandte Chemie International Edition, 2018, 57(26): 7769-7773. |
122 | Francke R, Schille B, Roemelt M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts[J]. Chemical Reviews, 2018, 118(9): 4631-4701. |
123 | Wu Y, Jiang Z, Lu X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642. |
124 | Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577(7791): 509-513. |
125 | Wang J, Kattel S, Hawxhurst C J, et al. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides[J]. Angewandte Chemie International Edition, 2019, 58(19): 6271-6275. |
126 | Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 58(4): 1163-1167. |
[1] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[2] | WANG Li, WANG Xingjie, LI Hao, CHEN Yongwei, LI Zhong. Separation performance of CO2/CH4 on porous carbons derived from glucose [J]. CIESC Journal, 2018, 69(2): 733-740. |
[3] | MENG Miaomiao, LIU Yingshu, LI Ziyi, JIANG Lijun, YANG Xiong, LIU Wenhai. Adsorption characteristics of low concentration gaseous naphthalene on ordered mesoporous carbons [J]. CIESC Journal, 2017, 68(8): 3109-3118. |
[4] | ZHOU Yu, WANG Yuxin. Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon [J]. CIESC Journal, 2017, 68(2): 519-534. |
[5] | WU Di, WANG Shanshan, LÜ Linghong, CAO Wei, LU Xiaohua. CH4 storage in nanoporous activated carbon by molecular simulation [J]. CIESC Journal, 2016, 67(9): 3707-3719. |
[6] | LIU Zhaoyong,ZHENG Jingtang,WANG Yanfei,ZHAO Yucui. Effect of N,N- dimethylformamide on pore structure of porous carbons via sol-gel method [J]. , 2007, 26(9): 1316-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||