CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2510-2529.DOI: 10.11949/0438-1157.20200084
• Reviews and monographs • Previous Articles Next Articles
Xiaoqin YE(),Zhiyue WEN,Wangqiang SHEN,Xing LU()
Received:
2020-01-19
Revised:
2020-04-06
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xing LU
通讯作者:
卢兴
作者简介:
叶小琴(1992—),女,博士研究生,基金资助:
CLC Number:
Xiaoqin YE, Zhiyue WEN, Wangqiang SHEN, Xing LU. Applications of fullerene materials in perovskite solar cells[J]. CIESC Journal, 2020, 71(6): 2510-2529.
叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529.
Add to citation manager EndNote|Ris|BibTeX
1 | Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. |
2 | Zhao Z R, Sun W H, Li Y L, et al. Simplification of device structures for low-cost, high-efficiency perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(10): 4756-4773. |
3 | Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett., 2013, 13(4): 1764-1769. |
4 | Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
5 | Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg. Chem., 2013, 52(15): 9019-9038. |
6 | Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. |
7 | Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54) [J]. Prog. Photovolt. Res. Appl., 2019, 27, 565-575. |
8 | Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(591):1-7. |
9 | Reed C A, Bolskar R D. Discrete fulleride anions and fullerenium cations[J]. Chem. Rev., 2000, 100(3): 1075-1120. |
10 | Imahori H, Hagiwara K, Akiyama T, et al. The small reorganization energy of C60 in electron transfer[J]. Chemical Physics Letters, 1996, 263(3): 545-550. |
11 | Frankevich E, Maruyama Y, Ogata H. Mobility of charge carriers in vapor-phase grown C60 single crystal[J]. Chemical Physics Letters, 1993, 214(1): 39-44. |
12 | Jeng J Y, Chiang Y F, Lee M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Adv. Mater., 2013, 25(27): 3727-3732. |
13 | Liang P W, Chueh C C, Williams S T, et al. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells[J]. Adv. Energy Mater., 2015, 5(10):1402321. |
14 | Xue Q F, Bai Y, Liu M Y, et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor[J]. Adv. Energy Mater., 2017, 7(9): 1602333. |
15 | Yang D, Zhang X R, Wang K, et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers[J]. Nano Lett., 2019, 19(5): 3313-3320. |
16 | Völker S F, Vallés-Pelarda M, Pascual J, et al. Fullerene-based materials as hole-transporting/electron-blocking layers: applications in perovskite solar cells[J]. Chem. Eur. J., 2018, 24(34): 8524-8529. |
17 | Wang Q, Shao Y C, Dong Q F, et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy Environ. Sci., 2014, 7(7): 2359-2365. |
18 | Gil-Escrig L, Momblona C, Sessolo M, et al. Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells[J]. J. Mater. Chem. A, 2016, 4(10): 3667-3672. |
19 | Wu C G, Chiang C H, Chang S H. A perovskite cell with a record-high-Voc of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer[J]. Nanoscale, 2016, 8(7): 4077-4085. |
20 | Xing Y, Sun C, Yip H L, et al. New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells[J]. Nano Energy, 2016, 26: 7-15. |
21 | Chiang C H, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. J. Mater. Chem. A, 2014, 2(38): 15897-15903. |
22 | Dai S M, Zhang X, Chen W Y, et al. Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC71BM in planar perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(48): 18776-18782. |
23 | Castro E, Zavala G, Seetharaman S, et al. Impact of fullerene derivative isomeric purity on the performance of inverted planar perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(36): 19485-19490. |
24 | Tian C B, Kochiss K, Castro E, et al. A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability[J]. J. Mater. Chem. A, 2017, 5(16): 7326-7332. |
25 | Khadka D B, Shirai Y, Yanagida M, et al. Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives[J]. ACS Appl. Mater. Interfaces, 2018, 10(26): 22074-22082. |
26 | Bai Y, Yu H, Zhu Z L, et al. High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer[J]. J. Mater. Chem. A, 2015, 3(17): 9098-9102. |
27 | Chang J W, Wang Y C, Song C J, et al. Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells[J]. J. Mater. Chem. C, 2018, 6(26): 6982-6987. |
28 | Shao S Y, Adbu-Aguye M, Qiu L, et al. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative[J]. Energy Environ. Sci., 2016, 9(7): 2444-2452. |
29 | Li B R, Zhen J M, Wan Y Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells[J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32471-32482. |
30 | Meng X Y, Bai Y, Xiao S, et al. Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance[J]. Nano Energy, 2016, 30: 341-346. |
31 | Tian C B, Castro E, Betancourt-Solis G, et al. Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells[J]. New J. Chem., 2018, 42(4): 2896-2902. |
32 | Luo Z H, Wu F, Zhang T, et al. Designing perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability [J]. Angew. Chem. Int. Ed., 2019, 58(25): 8520-8525. |
33 | Yao K, Leng S F, Liu Z L, et al. Fullerene-anchored core-shell ZnO nanoparticles for efficient and stable dual-sensitized perovskite solar cells[J]. Joule, 2019, 3(2): 417-431. |
34 | Wojciechowski K, Leijtens T, Siprovas S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. J. Phys. Chem. Lett., 2015, 6(12): 2399-2405. |
35 | Liu C, Yang Y, Ding Y, et al. High-efficiency and UV-stable planar perovskite solar cells using a low-temperature, solution-processed electron-transport layer[J]. ChemSusChem, 2018, 11(7): 1232-1237. |
36 | Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency[J]. Adv. Mater., 2006, 18(6): 789-794. |
37 | Rand B P, Burk D P, Forrest S R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells[J]. Phys. Rev. B, 2007, 75(11):115327. |
38 | Lenes M, Wetzelaer G A, Kooistra F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Adv. Mater., 2008, 20(11): 2116-2119. |
39 | He Y J, Chen H Y, Hou J H, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells[J]. J. Am. Chem. Soc., 2010, 132(4): 1377-1382. |
40 | Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization[J]. Adv. Mater.,2010, 22(39): 4355-4358. |
41 | Umeyama T, Imahori H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells[J]. Acc. Chem. Res., 2019, 52(8): 2046-2055. |
42 | Shao Y C, Yuan Y B, Huang J S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nature Energy, 2016, 1: 1-6. |
43 | Xu W Z, Yao X, Meng T Y, et al. Perovskite hybrid solar cells with a fullerene derivative electron extraction layer[J]. J. Mater. Chem. C, 2017, 5(17): 4190-4197. |
44 | Kuang C Y, Tang G, Jiu T G, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Lett., 2015, 15(4): 2756-2762. |
45 | Kim S S, Bae S, Jo W H. Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer[J]. Chem. Commun., 2015, 51(98): 17413-17416. |
46 | Kakavelakis G, Maksudov T, Konios D, et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer[J]. Adv. Energy Mater., 2017, 7(7): 1602120. |
47 | Bi D Q, Yi C Y, Luo J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1(10): 16142. |
48 | Song X, Wang W W, Sun P, et al. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells[J]. Appl. Phys. Lett., 2015, 106(3): 033901. |
49 | Chen Y H, Li N X, Wang L G, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells[J]. Nature Communications, 2019, 10(1): 1112. |
50 | Shao Y C, Xiao Z G, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5(1): 5784. |
51 | Collavini S, Kosta I, Völker S F, et al. Efficient regular perovskite solar cells based on pristine [70]fullerene as electron-selective contact[J]. ChemSusChem, 2016, 9(11): 1263-1270. |
52 | Lin H S, Jeon I, Xiang R, et al. Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes[J]. ACS Appl. Mater. Interfaces, 2018, 10(46): 39590-39598. |
53 | Ryu S, Seo J, Shin S S, et al. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature[J]. J. Mater. Chem. A, 2015, 3(7): 3271-3275. |
54 | Kim J H, Chueh C C, Williams S T, et al. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells[J]. Nanoscale, 2015, 7(41): 17343-17349. |
55 | Wang Y C, Li X D, Zhu L P, et al. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer[J]. Adv. Energy Mater., 2017. 7(21): 1701144. |
56 | Liu H R, Li S H, Deng L L, et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 23982-23989. |
57 | Qiu W, Bastos J P, Dasgupta S, et al. Highly efficient perovskite solar cells with crosslinked PCBM interlayers[J]. J. Mater. Chem. A, 2017, 5(6): 2466-2472. |
58 | Wojciechowski K, Ramirez I, Gorisse T, et al. Cross-linkable fullerene derivatives for solution-processed n-i-p perovskite solar cells [J]. ACS Energy Lett., 2016, 1(4): 648-653. |
59 | Song S, Hill R, Choi K, et al. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells[J]. Nano Energy, 2018, 49: 324-332. |
60 | Ke W J, Zhao D W, Grice C R, et al. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers[J]. J. Mater. Chem. A, 2015, 3(35): 17971-17976. |
61 | Yoon H, Kang S M, Lee J K, et al. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency[J]. Energy Environ. Sci., 2016, 9(7): 2262-2266. |
62 | Zhao D W, Ke W J, Grice C R, et al. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers[J]. Nano Energy, 2016, 19: 88-97. |
63 | Chen L C, Lin Y S, Tang P W, et al. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells[J]. Nanoscale, 2017, 9(45): 17802-17806. |
64 | Xu J X, Buin A, Ip A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nature Communications, 2015, 6: 7081. |
65 | Chiang C H, Wu C G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor[J]. Nature Photonics, 2016, 10(3): 196-200. |
66 | Ran C X, Chen Y H, Gao W Y, et al. One-dimensional (1D) [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(22): 8566-8572. |
67 | Liu C, Li W Z, Li H L, et al. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency[J]. Nanoscale, 2017, 9(37): 13967-13975. |
68 | Chen H B, Ding X H, Pan X, et al. Incorporating C60 as nucleation sites optimizing PbI2 films to achieve perovskite solar cells showing excellent efficiency and stability via vapor-assisted deposition method[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2603-2611. |
69 | Pascual J, Kosta I, Tuyen Ngo T, et al. Electron transport layer-free solar cells based on perovskite-fullerene blend films with enhanced performance and stability[J]. ChemSusChem, 2016, 9(18): 2679-2685. |
70 | Wu F, Chen T, Yue X, et al. Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells[J]. Organic Electronics, 2018, 58: 6-11. |
71 | Wang K, Liu C, Du P C, et al. Bulk heterojunction perovskite hybrid solar cells with large fill factor[J]. Energy Environ. Sci., 2015. 8(4): 1245-1255. |
72 | Liu X, Lin F, Chueh C C, et al. Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells[J]. Nano Energy, 2016, 30: 417-425. |
73 | Xu G Y, Xue R M, Chen W J, et al. New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells[J]. Adv. Energy Mater., 2018, 8(12): 1703054. |
74 | Qin Q Q, Zhang Z B, Cai Y Y, et al. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives[J]. Journal of Power Sources, 2018, 396: 49-56. |
75 | Tian C B, Zhang S J, Mei A Y, et al. A multifunctional bis-adduct fullerene for efficient printable mesoscopic perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 10835-10841. |
76 | Wu Y Z, Yang X D, Chen W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 1(11): 16148. |
77 | Rajagopal A, Liang P W, Chueh C C, et al. Defect passivation via a graded fullerene heterojunction in low-bandgap Pb-Sn binary perovskite photovoltaics[J]. ACS Energy Lett., 2017, 2(11): 2531-2539. |
78 | Zhang F, Shi W D, Luo J S, et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability[J]. Adv. Mater., 2017, 29(17): 1606806. |
79 | Abrusci A, Stranks S D, Docampo P, et al. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers[J]. Nano Lett., 2013, 13(7): 3124-3128. |
80 | Tao C, Neutzner S, Colella L, et al. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells[J]. Energy Environ. Sci., 2015, 8(8): 2365-2370. |
81 | Tian C B, Zhang S J, Li S, et al. A C60 modification layer using a scalable deposition technology for efficient printable mesoscopic perovskite solar cells[J]. Sol. RRL, 2018, 2(10):1800174. |
82 | Zhou Y Q, Wu B S, Lin G H, et al. Enhancing performance and uniformity of perovskite solar cells via a solution-processed C70 interlayer for interface engineering[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33810-33818. |
83 | Li Y W, Zhao Y, Chen Q, et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. J. Am. Chem. Soc., 2015, 137(49): 15540-15547. |
84 | Zhang Y H, Wang P, Yu X G, et al. Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier[J]. J. Mater. Chem. A, 2016, 4(47): 18509-18515. |
85 | Chen Q, Wang W, Xiao S Q, et al. Improved performance of planar perovskite solar cells using an amino-terminated multifunctional fullerene derivative as the passivation layer[J]. ACS Appl. Mater. Interfaces, 2019, 11(30): 27145-27152. |
86 | Ke W J, Zhao D W, Xiao C X, et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(37): 14276-14283. |
87 | Liu X, Tsai K W, Zhu Z L, et al. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combustion method for efficient perovskite solar cells[J]. Adv. Mater. Interfaces, 2016, 3(13): 1600122. |
88 | Liu K, Chen S, Wu J H, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy Environ. Sci., 2018. 11(12): 3463-3471. |
89 | Zhong M Y, Liang Y Q, Zhang J Q, et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer[J]. J. Mater. Chem. A, 2019, 7(12): 6659-6664. |
90 | Tian C B, Lin K B, Lu J X, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods, 2019, 4(5): 1900476. |
91 | Qin M C, Ma J J, Ke W J, et al. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8460-8466. |
92 | Eze V O, Seike Y, Mori T. Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers[J]. Organic Electronics, 2017, 46: 253-262. |
93 | Hou Q Z, Ren J, Chen H J, et al. Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells[J]. ChemElectroChem, 2018, 5(5): 726-731. |
94 | Dong Q, Ho C H, Yu H, et al. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer[J]. Chem. Mater., 2019, 31(17): 6833-6840. |
95 | Seo J, Park S, Kin Y C, et al. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells[J]. Energy Environ. Sci., 2014, 7(8): 2642-2646. |
96 | Liu X D, Yu H, Yan L, et al. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(11): 6230-6237. |
97 | Azimi H, Ameri T, Zhang H, et al. A universal interface layer based on an amine-functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells[J]. Adv. Energy Mater., 2015, 5(8): 1401692. |
98 | Chen K, Cao T T, Sun Z Q, et al. Performance enhancement of perovskite solar cells through interfacial engineering: water-soluble fullerenol C60(OH)16 as interfacial modification layer[J]. Organic Electronics, 2018, 62: 327-334. |
99 | Liu Y, Bag M, Renna L A, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells[J]. Adv. Energy Mater., 2016, 6(2): 1501606. |
100 | Xie J S, Yu X G, Sun X, et al. Improved performance and air stability of planar perovskite solar cells via interfacial engineering using a fullerene amine interlayer[J]. Nano Energy, 2016, 28: 330-337. |
101 | Liu X D, Huang P, Dong Q Q, et al. Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer[J]. Sci. China Chem., 2016, 60(1): 136-143. |
102 | Liu X, Jiao W X, Lei M, et al. Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells[J]. J. Mater. Chem. A, 2015, 3(17): 9278-9284. |
103 | Liu X, Lei M, Zhou Y, et al. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers[J]. Appl. Phys. Lett., 2015, 107(6): 063901. |
104 | Zhu Z L, Chueh C C, Lin F, et al. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer[J]. Adv. Sci., 2016, 3(9): 1600027. |
105 | Cao T T, Huang P, Zhang K C, et al. Interfacial engineering via inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells[J]. J. Mater. Chem. A, 2018, 6(8): 3435-3443. |
106 | Xie J S, Yu X G, Huang J B, et al. Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability[J]. Adv. Sci., 2017, 4(8): 1700018. |
107 | Duzhko V V, Dunham B, Rosa S J, et al. N-doped zwitterionic fullerenes as interlayers in organic and perovskite photovoltaic devices[J]. ACS Energy Lett., 2017, 2(5): 957-963. |
108 | Jeon I, Ueno H, Seo S, et al. Lithium-ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti-oxidation[J]. Angew. Chem. Int. Ed., 2018, 57(17): 4607-4611. |
109 | Jeon I, Shawky A, Lin H S, et al. Controlled redox of lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells[J]. J. Am. Chem. Soc., 2019, 141(42): 16553-16558. |
110 | Wang K, Liu X Y, Huang R, et al. Nonionic Sc3N@C80 dopant for efficient and stable halide perovskite photovoltaics[J]. ACS Energy Lett., 2019, 4(8): 1852-1861. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[8] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[11] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[12] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[13] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[14] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||