1 |
方向晨. 加氢精制[M]. 北京: 中国石化出版社, 2006: 260.
|
|
Fang X C. Hydrofining[M]. Beijing: China Petrochemical Press, 2006: 260.
|
2 |
Furimsky E. Catalysts for Upgrading Heavy Petroleum Feeds[M]. Amsterdam: Elsevier Science B.V, 2007.
|
3 |
Ancheyta J, Rana M S, Furimsky E. Hydroprocessing of heavy petroleum feeds: tutorial[J]. Catalysis Today, 2005, 109: 3-15.
|
4 |
Besenbacher F, Brorson M, Clausen B S, et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: insight into mechanistic, structural and particle size effects[J]. Catalysis Today, 2008, 130: 86-96.
|
5 |
Hinnemann B, Nørskov J K, Topsøe H. A density functional study of the chemical differences between type I and type II MoS2-based structures in hydrotreating catalysts[J]. Journal of Physical Chemistry B, 2005, 109(6): 2245-2253.
|
6 |
Kibsgaard J, Tuxen A, Knudsen K G, et al. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts[J]. Journal of Catalysis, 2010, 272(2): 195-203.
|
7 |
van Haandel L, Bremmer G M, Hensen E J M, et al. Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 342: 27-39.
|
8 |
Chen J J, Maugé F, Fallah J E, et al. IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts — a step forward to differentiate the reactivity of M-edge and S-edge[J]. Journal of Catalysis, 2014, 320: 170-179.
|
9 |
Chou C W, Chu S J, Chiang H J, et al. Temperature-programmed reduction study on calcination of nano-palladium[J]. Journal of Physical Chemistry B, 2001, 105: 9113-9117.
|
10 |
Yeoh W M, Lee K Y, Chai S P, et al. Effective synthesis of carbon nanotubes via catalytic decomposition of methane: influence of calcination temperature on metal-support interaction of Co-Mo/MgO catalyst[J]. Journal of Physics and Chemistry of Solids, 2013, 74: 1553-1559.
|
11 |
Liu H, Yin C, Liu B, et al. Effect of calcination temperature of unsupported NiMo catalysts on the hydrodesulfurization of dibenzothiophene[J]. Energy & Fuels, 2014, 28(4): 2429-2436.
|
12 |
葛晓萍, 王世权, 傅丽荣, 等. B酸和L酸与催化裂化反应中积灰的关系[J].青岛化工学院学报, 1998, 19(31): 237-242.
|
|
Ge X P, Wang S Q, Fu L R, et al. Relationship of Brönsted and Lewis acid to coking in catalytic cracking reactions[J]. Journal of Qingdao Institute of Chemical Technology, 1998, 19(31): 237-242.
|
13 |
Pérot G. Hydrotreating catalysts containing zeolites and related materials-mechanistic aspects related to deep desulfurization[J]. Catalysis Today, 2003, 86: 111-128.
|
14 |
Solís A L, Agudo J, Ramírez T, et al. Hydrodesulfurization of hindered dibenzothiophenes on bifunctional NiMo catalysts supported on zeolite-alumina composites[J]. Catalysis Today, 2006, 116: 469-477.
|
15 |
Ancheyta-Juárez J, Maity S K, Betancourt-Rivera G, et al. Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil[J]. Applied Catalysis A: General, 2001, 21(1/2): 195-208.
|
16 |
Rana M S, Ancheyta J, Rayo P, et al. Effect of alumina preparation on hydrodemetallization and hydrodesulfurization of Maya crude[J]. Catalysis Today, 2004, 98: 151-160.
|
17 |
Chen A, Chen S, Hua D, et al. Diffusion of heavy oil in well-defined and uniform pore-structure catalyst under hydrodemetallization reaction conditions[J]. Chemical Engineering Journal, 2013, 231: 420-426.
|
18 |
Fukase S, Akashah S. Technolgy: recent development of hydrotreating catalysts for gas oil and residue[J]. Hydrocarbon Asia, 2004, 14(2): 24-26, 28, 30.
|
19 |
Mace O, Wei J. Diffusion in random particle models for ́hydrodemetalation catalysts[J]. Industrial & Engineering Chemistry Research, 1991, 30: 909-918.
|
20 |
Rao S M, Coppens M O. Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—application to hydrodemetalation[J]. Chemical Engineering Science, 2012, 83: 66-76.
|
21 |
Shi Y, Ye G H, Yang C F, et al. Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor[J]. Chemical Engineering Science, 2019, 202: 336-346.
|
22 |
Shi Y, Yang C F, Zhao X Q, et al. Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9829-9837.
|
23 |
Otto K, Hubbard C P, Weber W H, et al. Raman spectroscopy of palladium oxide on γ-alumina applicable to automotive catalysts: nondestructive, quantitative analysis; oxidation kinetics; fluorescence quenching[J]. Applied Catalysis B: Environmental, 1992, 1(4): 317-327.
|
24 |
Duan A J, Li T S, Zhao Z, et al. Synthesis of hierarchically porous L-KIT-6 silica–alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene[J]. Applied Catalysis B: Environmental, 2015, 165: 763-773.
|
25 |
Wang X L, Zhao Z, Zheng P, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 344: 680-691.
|
26 |
Elst L P A F, Eijsbouts S, van Langeveld A D, et al. Deactivation of MoS2/Al2O3 in thiophene hydrodesulfurization: an infrared spectroscopic analysis by adsorbed CO[J]. Journal of Catalysis, 2000, 196: 95-103.
|
27 |
Travert A, Dujardin C, Maugé F, et al. CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study[J]. Journal of Physical Chemistry B, 2006, 110(3): 1261-1270.
|
28 |
Furimsky E, Massoth F E. Deactivation of hydroprocessing catalysts[J]. Catalysis Today, 1999, 52: 381-495.
|
29 |
Callejas M A, Martínez M T, Fierro J L G, et al. Structural and morphological study of metal deposition on an aged hydrotreating catalyst[J]. Applied Catalysis A: General, 2001, 220(1/2): 93-104.
|
30 |
Rodríguez E, Félix G, Ancheyta J, et al. Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons[J]. Fuel, 2018, 225: 118-133.
|