CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 62-69.DOI: 10.11949/0438-1157.20200663
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2020-05-28
Revised:
2020-06-19
Online:
2020-11-06
Published:
2020-11-06
Contact:
Xiaohong YAN
通讯作者:
闫孝红
作者简介:
陈光(1995—),男,博士研究生,基金资助:
CLC Number:
Guang CHEN, Xiaohong YAN. A phase change model for simulation of vapor-liquid phase change process[J]. CIESC Journal, 2020, 71(S2): 62-69.
陈光, 闫孝红. 一种模拟气液相变过程的相变模型[J]. 化工学报, 2020, 71(S2): 62-69.
Add to citation manager EndNote|Ris|BibTeX
项目 | 密度ρ/(kg/m3) | 黏度μ/(Pa·s) | 比热容cp/(J/(kg·K)) | 热导率k/(W/(m·K)) | 汽化潜热hlv/(J/kg) | 表面张力系数 σlv/(N/m) |
---|---|---|---|---|---|---|
气相 | 0.597 | 1.26×10-5 | 2030 | 0.025 | 2.26×106 | 0.059 |
液相 | 958.4 | 2.8×10-4 | 4216 | 0.679 |
Table 1 Physical properties of water and steam at 101.3 kPa
项目 | 密度ρ/(kg/m3) | 黏度μ/(Pa·s) | 比热容cp/(J/(kg·K)) | 热导率k/(W/(m·K)) | 汽化潜热hlv/(J/kg) | 表面张力系数 σlv/(N/m) |
---|---|---|---|---|---|---|
气相 | 0.597 | 1.26×10-5 | 2030 | 0.025 | 2.26×106 | 0.059 |
液相 | 958.4 | 2.8×10-4 | 4216 | 0.679 |
编号 | 网格尺寸/μm | 时间步长/s |
---|---|---|
1 | 5 | 2×10-5 |
2 | 5 | 5×10-5 |
3 | 5 | 1×10-4 |
4 | 10 | 2×10-5 |
Table 2 Calculation cases of Stefan problem
编号 | 网格尺寸/μm | 时间步长/s |
---|---|---|
1 | 5 | 2×10-5 |
2 | 5 | 5×10-5 |
3 | 5 | 1×10-4 |
4 | 10 | 2×10-5 |
项目 | 密度ρ/ (kg/m3) | 黏度μ/ (Pa·s) | 比热容cp/ (J/(kg·K)) | 热导率k/ (W/(m·K)) |
---|---|---|---|---|
气相 | 5 | 0.005 | 200 | 1 |
液相 | 200 | 0.1 | 400 | 40 |
Table 3 Properties of vapor and liquid in two-dimensional horizontal film boiling problem
项目 | 密度ρ/ (kg/m3) | 黏度μ/ (Pa·s) | 比热容cp/ (J/(kg·K)) | 热导率k/ (W/(m·K)) |
---|---|---|---|---|
气相 | 5 | 0.005 | 200 | 1 |
液相 | 200 | 0.1 | 400 | 40 |
1 | Kharangate C R, Mudawar I. Review of computational studies on boiling and condensation [J]. Int. J. Heat Mass Transfer, 2017, 108(A): 1164-1196. |
2 | Gibou F, Chen L G, Nguyen D, et al. A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change [J]. J. Comput. Phys., 2007, 222(2): 536-555. |
3 | Sun D L, Xu J L, Wang L. Development of a vapor-liquid phase change model for volume-of-fluid method in Fluent [J]. Int. Commun. Heat Mass Transfer, 2012, 39(8): 1101-1106. |
4 | 孙东亮, 徐进良, 王丽. 求解两相蒸发和冷凝问题的气液相变模型 [J]. 西安交通大学学报, 2012, 46(7): 7-11. |
Sun D L, Xu J L, Wang L. A vapor-liquid phase change model for two-phase boiling and condensation [J]. Journal of Xi􀆳an Jiaotong University, 2012, 46(7): 7-11. | |
5 | Sun D L, Xu J L, Chen Q C. Modeling of the evaporation and condensation phase-change problems with Fluent [J]. Numer. Heat Transfer Part B - Fundam., 2014, 66(4): 326-342. |
6 | Perez-Raya I, Kandlikar S G. Numerical modeling of interfacial heat and mass transport phenomena during a phase change using ANSYS-Fluent [J]. Numer. Heat Transfer Part B-Fundam., 2016, 70(4): 322-339. |
7 | Sato Y, Ničeno B. A sharp-interface phase change model for a mass-conservative interface tracking method [J]. J. Comput. Phys., 2013, 249: 127-161. |
8 | Tsui Y Y, Lin S W, Lai Y N, et al. Phase change calculations for film boiling flows [J]. Int. J. Heat Mass Transfer, 2014, 7: 745-757. |
9 | Perez-Raya I, Kandlikar S G. Discretization and implementation of a sharp interface model for interfacial heat and mass transfer during bubble growth [J]. Int. J. Heat Mass Transfer, 2018, 116: 30-49. |
10 | Schrage R W. A Theoretical Study of Interphase Mass Transfer [M]. New York: Columbia University Press, 1953. |
11 | Tanasawa I. Advances in condensation heat transfer [J]. Advances in Heat Transfer, 1991, 21: 55-139. |
12 | Lee W H. A Pressure Iteration Scheme for Two-Phase Flow Modeling [M]// Multi-phase Transport: Fundamentals, Reactor Safety, Applications. Washington, DC: Hemisphere Publishing, 1980. |
13 | Yang Z, Peng X F, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube [J]. Int. J. Heat Mass Transfer, 2008, 51(5/6): 1003-1016. |
14 | Kim D G, Jeon C H, Park I S. Comparison of numerical phase-change models through Stefan vaporizing problem [J]. Int. Commun. Heat Mass Transfer, 2017, 87: 228-236. |
15 | Gorlé C, Lee H, Houshmand F, et al. Validation study for VOF simulations of boiling in a microchannel [C]//ASME International Technical Conference & Exhibition on Packaging & Integration of Electronic & Photonic Microsystems Collocated with the ASME International Conference on Nanochannels. 2015. |
16 | de Schepper S C K, Heynderickx G J, Marin G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker [J]. Comput. Chem. Eng., 2009, 33(1): 122-132. |
17 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J. Comput. Phys., 1981, 39(1): 201-225. |
18 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. J. Comput. Phys., 1992, 100(2): 335-354. |
19 | Deen W M. Analysis of Transport Phenomena [M]. New York/Oxford: Oxford University Press, 1998. |
20 | Welch S W J, Wilson J. A volume of fluid based method for fluid flows with phase change [J]. J. Comput. Phys., 2000, 160(2): 662-682. |
21 | Alexiades V, Solomon A D. Mathematical modeling of melting and freezing processes [J]. Journal of Solar Energy Engineering, 1993, 115(2): 121. |
22 | Agarwal D K, Welch S W J, Biswas G, et al. Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method [J]. J. Heat Transfer, 2004, 126(3): 329-338. |
23 | Ding S T, Luo B, Li G. A volume of fluid based method for vapor-liquid phase change simulation with numerical oscillation suppression [J]. Int. J. Heat Mass Transfer, 2017, 110: 348-359. |
24 | Akhtar M W, Kleis S J. Boiling flow simulations on adaptive octree grids [J]. Int. J. Multiphase Flow, 2013, 53: 88-99. |
25 | 曹志柱, 孙东亮, 魏进家, 等. 基于非结构化VOSET方法的沸腾传热[J]. 科学通报, 2020, 65(17): 1723-1733. |
Cao Z Z, Sun D L, Wei J J, et al. Boiling heat transfer by using the VOSET method based on unstructured grids [J]. Chinese Science Bulletin, 2020, 65(17): 1723-1733. | |
26 | Klimenko V V. Film boiling on a horizontal plate — new correlation [J]. Int. J. Heat Mass Transfer, 1981, 24: 69-79. |
27 | Berenson P J. Film-boiling heat transfer from a horizontal surface [J]. J. Heat Transfer, 1961, 83(3): 351-356. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[9] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[10] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[11] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[12] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[13] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[14] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[15] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||