CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 609-618.DOI: 10.11949/0438-1157.20200836
• Material science and engineering, nanotechnology • Previous Articles Next Articles
ZHU Huawei(),YU Haifeng,JIANG Qianqian,YANG Zhaofeng,JIANG Hao(
),LI Chunzhong
Received:
2020-06-29
Revised:
2020-09-07
Online:
2021-01-05
Published:
2021-01-05
Contact:
JIANG Hao
通讯作者:
江浩
作者简介:
朱华威(1997—),男,博士研究生,基金资助:
CLC Number:
ZHU Huawei, YU Haifeng, JIANG Qianqian, YANG Zhaofeng, JIANG Hao, LI Chunzhong. Synthesis and performance improvement mechanism of high-efficiency B doped LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. CIESC Journal, 2021, 72(1): 609-618.
朱华威, 余海峰, 江仟仟, 杨兆峰, 江浩, 李春忠. 硼高效掺杂LiNi0.5Co0.2Mn0.3O2正极材料及其性能提升机制[J]. 化工学报, 2021, 72(1): 609-618.
Fig.1 Schematic illustration for the preparation of NCM-B (a); SEM (b), and TEM [(c),(d)] images of the NCM; SEM (e) and TEM [(f),(g)] images of the B-coated NCM; SEM (h) and TEM [(i),(j)] images of the NCM-B; XPS survey spectra (k), O 1s (l) and B 1s (m) XPS spectra of the NCM-B with different etching depth
Sample | a/? | c/? | Volume/?3 | c/a | Rwp/% |
---|---|---|---|---|---|
NCM-B | 2.8703 | 14.2502 | 101.674 | 4.9620 | 14.68 |
NCM | 2.8670 | 14.2289 | 101.291 | 4.9630 | 12.56 |
Table 1 Lattice constants of the NCM-B and NCM calculated from X-ray Rietveld refinement
Sample | a/? | c/? | Volume/?3 | c/a | Rwp/% |
---|---|---|---|---|---|
NCM-B | 2.8703 | 14.2502 | 101.674 | 4.9620 | 14.68 |
NCM | 2.8670 | 14.2289 | 101.291 | 4.9630 | 12.56 |
Fig.4 The calculated dQ/dV profiles [(a),(b)], the initial three CV curves at 0.2 mV·s-1 [(c),(d)] of the NCM-B and the NCM;Linear relationship between the anodic/cathodic peak current (ip) and the square root of the scan rate (v1/2) of the NCM-B and the NCM [(e),(f)], respectively
1 | Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. J. Power Sources, 2013, 226: 272-288. |
2 | 江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J].化工学报, 2015, 66(8): 2872-2876. |
Jiang H, Li C Z. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances [J]. CIESC Journal, 2015, 66(8): 2872-2876. | |
3 | Huang Y, Jin F M, Chen F J, et al. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages [J]. J. Power Sources, 2014, 256: 1-7. |
4 | Li L J, Chen Z Y, Zhang Q B, et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries [J]. J. Mater. Chem. A, 2015, 3(2): 894-904. |
5 | Kong J Z, Ren C, Tai G A, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material [J]. J. Power Sources, 2014, 266: 433-439. |
6 | Shi J L, Xiao D D, Ge M, et al. High-capacity cathode material with high voltage for Li-ion batteries [J]. Adv. Mater., 2018, 30(9): 1705575. |
7 | Liu B, Jia Y, Yuan C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85-112. |
8 | Mao Y W, Wang X L, Xia S H, et al. High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material [J]. Adv. Funct. Mater., 2019, 29(18): 1900247. |
9 | Li Y G, Yu H F, Jiang H, et al. Surface-engineering of layered LiNi0.815Co0.15Al0.035O2 cathode material for high-energy and stable Li-ion batteries [J]. J. Energy Chem., 2018, 27(2): 559-564. |
10 | Zhao Z K, Chen S, Mu D B, et al. Understanding the surface decoration on primary particles of nickel-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material with lithium phosphate [J]. J. Power Sources, 2019, 431: 84-92. |
11 | Chen Z, Kim G T, Guang Y, et al. Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: towards superior cycling stability at elevated temperature and high voltage [J]. J. Power Sources, 2018, 402: 263-271. |
12 | Li X L, Jin L B, Song D W, et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery [J]. J. Energy Chem., 2020, 40: 39-45. |
13 | Liang J N, Lu Y, Wang J, et al. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage [J]. J. Energy Chem., 2020, 47: 188-195. |
14 | 宋刘斌, 蒋鹏, 肖忠良, 等. 核壳结构正极材料界面设计与性能研究[J]. 化工学报, 2019, 70(7): 2426-2438. |
Song L B, Jiang P, Xiao Z L, et al. Interface design and properties of core-shell structure cathode materials[J]. CIESC Journal, 2019, 70(7): 2426-2438. | |
15 | Wu F, Li Q, Chen L, et al. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage [J]. ChemSusChem, 2019, 12(4): 935-943. |
16 | Zhu H W, Yu H F, Jiang H, et al. High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries[J]. Chem. Eng. Sci., 2020, 217, 115518. |
17 | Yu H F, Li Y G, Jiang H, et al. 110th anniversary: concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries[J]. Ind. Eng. Chem. Res., 2019, 58(10): 4108-4115. |
18 | Kong D, Hu J, Chen Z, et al. Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery[J]. Adv. Energy Mater., 2019, 9(41): 1901756. |
19 | Steiner J D, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials [J]. ACS Appl. Mater. Interfaces, 2019, 11(41): 37885-37891. |
20 | Zhang C X, Xu S, Han B, et al. Towards rational design of high-performance Ni-rich layered oxide cathodes: the interplay of borate-doping and excess lithium [J]. J. Power Sources, 2019, 431: 40-47. |
21 | Jiang Y, Liu Z, Zhang Y, et al. Full-gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material with improved rate and cycle performance for lithium ion batteries [J]. Electrochem. Acta, 2019, 309: 74-85. |
22 | Xie H L, Li C L, Kan W H, et al. Consolidating the grain boundary of garnet electrolyte LLZTO with Li3BO3 for high performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries [J]. J. Mater. Chem. A, 2019, 7(36): 20965-20965. |
23 | Kang S, Kim, J, Stoll M, et al. Layered Li(Ni0.5-xMn0.5-xM′2x)O2, (M′=Co, Al, Ti, x = 0, 0.025) cathode materials for Li-ion rechargeable batteries [J]. J. Power Sources, 2002, 112: 41-48. |
24 | Xie H, Du K, Hu G, et al. Synthesis of LiNi0.8Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties [J]. J. Mater. Chem. A, 2015, 3(40): 20236-20243. |
25 | 耿淑君, 黄青山, 朱全红, 等. 共沉淀法制备LiNi1-x-yCoxMnyO2正极材料工艺条件探究[J]. 化工学报, 2018, 69(1): 175-187. |
Geng S J, Huang Q S, Zhu Q H, et al. Investigation on synthesis conditions of LiNi1-x-yCoxMnyO2 cathode material via co-precipitation[J]. CIESC Journal, 2018, 69(1): 175-187. | |
26 | Li J Y, Li W D, Wang S Y, et al. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum [J]. Chem. Mater., 2018, 30(9): 3101-3109. |
27 | Ryu H H, Park K J, Yoon D R, et al. Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability [J]. Adv. Energy Mater., 2019, 9(44): 1902698. |
28 | Hou P, Li F, Sun Y, et al. Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2018, 10(29): 24508-24515. |
29 | Deng Z N, Jiang H, Hu Y J, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries [J]. Adv. Mater., 2017, 29(10): 1603020. |
30 | Jiang Q Q, Yu H F, Hu Y J, et al. Exposed surface engineering of high-voltage LiNi0.5Co0.2Mn0.3O2 cathode materials enables high-rate and durable Li-ion batteries [J]. Ind. Eng. Chem. Res., 2019, 58(51): 23099-23105. |
31 | Park K J, Jung H G, Kuo L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries [J]. Adv. Energy Mater., 2018, 8(25): 1801202. |
32 | Fu J, Mu D, Wu B, et al. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate [J]. Electrochim. Acta, 2017, 246: 27-34. |
33 | Li Y, Wan S, Veith G M, et al. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V [J]. Adv. Energy Mater., 2017, 7(4): 1601397. |
34 | Zhang C C, Liu S Y, Su J M, et al. Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries [J]. Nanoscale, 2018, 10(18): 8820-8831. |
35 | Wang L F, Liu G Y, Ding X, et al. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11(37): 33901-33912. |
36 | Li Y C, Veith G M, Browning K L, et al. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries [J]. Nano Energy, 2017, 40: 9-19. |
[1] | Wenlin ZHANG, Yu HUO, Gongwei LI, Tengfei SUN, Yongqi ZHAO, Chunli LI. Ionic liquids as electrolyte additives for high-voltage lithium-ion batteries [J]. CIESC Journal, 2019, 70(6): 2334-2342. |
[2] | GUO Li, XIANG Xiaofeng, WU Xing, MA Xiaoxun, XIA Yashen. Conversion of carbon dioxide with non-equilibrium electronegative ions of iodine [J]. CIESC Journal, 2012, 63(10): 3297-3303. |
[3] | ZHANG Guoqing,MA Li,NI Pei,LIU Yuangang. Research progress of low temperature electrolytes for Li-ion batteries [J]. , 2008, 27(2): 209-. |
[4] | WANG Jialin,CHEN Chunmao,ZUO Yan,YAN Guangxu,GUO Shaohui. Study on improving biodegradability of oilfield wastewater by high voltage pulsed discharge/ozone technology [J]. , 2008, 27(2): 250-. |
[5] | SHEN Ding,YANG Shaobin,ZHANG Shukai . Development of Sn-Co and Sn-Co-C anode materials for Li-ion batteries [J]. , 2008, 27(12): 1892-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||