CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 597-608.DOI: 10.11949/0438-1157.20201078
• Material science and engineering, nanotechnology • Previous Articles Next Articles
YU Fuqiang1(),DU Jianjun1,2(),LU Yang1,MA He1,FAN Jiangli1,2,SUN Wen1,2,LONG Saran1,2,PENG Xiaojun1
Received:
2020-07-31
Revised:
2020-11-04
Online:
2021-01-05
Published:
2021-01-05
Contact:
DU Jianjun
于富强1(),杜健军1,2(),路杨1,马贺1,樊江莉1,2,孙文1,2,龙飒然1,2,彭孝军1
通讯作者:
杜健军
作者简介:
于富强(1995—),男,硕士研究生,基金资助:
CLC Number:
YU Fuqiang, DU Jianjun, LU Yang, MA He, FAN Jiangli, SUN Wen, LONG Saran, PENG Xiaojun. Fabrication of serum albumin-copper phthalocyanine nanoparticles for mitochondria-targeted phototherapy[J]. CIESC Journal, 2021, 72(1): 597-608.
于富强, 杜健军, 路杨, 马贺, 樊江莉, 孙文, 龙飒然, 彭孝军. 血清白蛋白-铜酞菁纳米粒子用于线粒体靶向光疗[J]. 化工学报, 2021, 72(1): 597-608.
Add to citation manager EndNote|Ris|BibTeX
Fig.3 Singlet-oxygen generation of MB(a), LGS-CuPc(b), LGS-CuPc-BSA NPs (c) in DMF with DPBF, and the linear relationship between time and absorption of MB, LGS- CuPc, and LGS-CuPc-BSA NPs (d)
Fig.4 Photothermal heating curves for the change of temperature with time in different concentrations (20, 30, and 40 μmol·L-1) of LGS-CuPc (a), LGS-CuPc-BSA NPs irradiated by 671 nm laser (800 mW·cm-2) (b). The temperature variations of LGS-CuPc-BSA NPs for 5 cycles (20 min per cycle) (c). Calculation of τ value (d)
Fig.5 Cell viabilities after treatments with different concentrations of LGS-CuPc-BSA NPs (a) and LGS-CuPc (b) with and without 671 nm (800 mW·cm-2) laser irradiation for 10 min
1 | Li M, Xia J, Tian R, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors[J]. Journal of the American Chemical Society, 2018, 140(44): 14851-14859. |
2 | 汪凌云, 曹德榕. 卟啉类光敏剂在光动力治疗中的应用研究[J]. 有机化学, 2012, 32: 2248-2264. |
Wang L Y, Cao D R. Application of porphyrin photosensitizer in photodynamic therapy[J]. Organic Chemistry, 2012, 32: 2248-2264. | |
3 | Zou Y, Li M, Xiong T, et al. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy[J]. Small, 2020, 16(18): 1907677. |
4 | Tang W, Yang Z, Wang S, et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy[J]. ACS Nano, 2018, 12(3): 2610-2622. |
5 | Feng L, Tao D, Dong Z, et al. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection[J]. Biomaterials, 2017, 127: 13-24. |
6 | Han Y, Chen Z, Zhao H, et al. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles[J]. Journal of Controlled Release, 2018, 284: 15-25. |
7 | Lu W, Lan Y, Xiao K, et al. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer[J]. Journal of Materials Chemistry B, 2017, 5(6): 1275-1283. |
8 | Zhang Z, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20): 7317-7326. |
9 | Jiang B, Hu L, Shen X, et al. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18008-18017. |
10 | Wu F, Lu Y, Mu X, et al. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32388-32396. |
11 | Liang S, Deng X, Xu G, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy[J]. Advanced Functional Materials, 2020, 30(13): 1908598. |
12 | 徐延明, 赵明, 李坚, 等. 氨基酞菁-二氧化钛可见-近红外光催化剂的制备及其性能[J]. 化工学报, 2016, 67(5): 1915-1921. |
Xu Y M, Zhao M, Li J, et al. Preparation and performance of aminophthalocyanine-titanium dioxide visible-near infrared photocatalyst[J]. CIESC Journal, 2016, 67(5): 1915-1921. | |
13 | 丁兰兰, 栾立强, 施佳伟, 等. 酞菁在光动力治疗中的应用[J]. 无机化学学报, 2013, 29(8): 1591-1598. |
Ding L L, Luan L Q, Shi J W, et al. Application of phthalocyanine in photodynamic therapy[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591-1598. | |
14 | 李明乐, 彭孝军. 靶标性酞菁类光敏剂的光动力疗法研究进展[J]. 化学学报, 2016, 74: 959-968. |
Li M L, Peng X J. Research progress in photodynamic therapy of targeted phthalocyanine photosensitizers[J]. Acta Chimica Sinica, 2016, 74: 959-968. | |
15 | Li X, Wen J, Zhang Y, et al. In vitro and in vivo evaluation of improved EGFR targeting peptide-conjugated phthalocyanine photosensitizers for tumor photodynamic therapy[J].Chinese Chemical Letters, 2018, 29(6): 1171-1178. |
16 | Li X, Yu S, Lee D, et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy[J]. ACS Nano, 2018, 12(1): 681-688. |
17 | Li X, Peng X, Zheng B, et al. New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chemical Science, 2018, 9(8): 2098-2104. |
18 | Jiang B, Hu L, Wang D, et al. Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method[J]. J. Mater. Chem. B, 2014, 2(41): 7141-7148. |
19 | Zhu Q, Chen X, Xu X, et al. Tumor-specific self-degradable nanogels as potential carriers for systemic delivery of anticancer proteins[J]. Advanced Functional Materials, 2018, 28(17): 1707371. |
20 | Peng S, Wang H, Zhao W, et al. Zwitterionic polysulfamide drug nanogels with microwave augmented tumor accumulation and on‐demand drug release for enhanced cancer therapy[J]. Advanced Functional Materials, 2020, 30(23): 2001832. |
21 | Yang H, Wang Q, Li Z, et al. Hydrophobicity-adaptive nanogels for programmed anticancer drug delivery[J]. Nano Letters, 2018, 18(12): 7909-7918. |
22 | Li Y, Hong W, Zhang H, et al. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy[J]. Journal of Controlled Release, 2020, 317: 232-245. |
23 | Xu T, Li J, Cheng F, et al. Fabrication of a polypseudorotaxane nanoparticle with synergistic photodynamic and chemotherapy[J]. Chinese Chemical Letters, 2017, 28(9): 1885-1888. |
24 | Li J, Huang J, Lyu Y, et al. Photoactivatable organic semiconducting pro-nanoenzymes[J]. Journal of the American Chemical Society, 2019, 141(9): 4073-4079. |
25 | Meng X, Zhang B, Yi Y, et al. Accurate and real-time temperature monitoring during MR imaging guided PTT[J]. Nano Letters, 2020, 20(4): 2522-2529. |
26 | Zeng Q, Zhang R, Zhang T, et al. H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy[J]. Biomaterials, 2019, 207: 39-48. |
27 | Cui H, Hu D, Zhang J, et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy[J]. Chinese Chemical Letters, 2017, 28(7): 1391-1398. |
28 | Du J, Zhang Y, Ge H, et al. Ultrasound-degradable serum albumin nanoplatform for in situ controlled drug release[J]. Chemical Communications, 2020, 56(54): 7503-7506. |
29 | Hu T, Liu Y. Probing the interaction of cefodizime with human serum albumin using multi-spectroscopic and molecular docking techniques[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107: 325-332. |
30 | Lu W, Lan Y, Xiao K, et al. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer[J]. Journal of Materials Chemistry B, 2017, 5(6): 1275-1283. |
31 | Liu X, Tian K, Zhang J, et al. Smart NIR-light-mediated nanotherapeutic agents for enhancing tumor accumulation and overcoming hypoxia in synergistic cancer therapy[J]. ACS Applied Bio Materials, 2019, 2(3): 1225-1232. |
32 | Lleonart M E, Grodzicki R, Graifer D M, et al. Mitochondrial dysfunction and potential anticancer therapy[J]. Medicinal Research Reviews, 2017, 37(6): 1275-1298. |
33 | Shi C, Li M, Zhang Z, et al. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy[J]. Biomaterials, 2020, 233: 119755. |
34 | 李晓静, 孙文, 康垚, 等. PEG化羟基磷灰石纳米体系的制备及双通道荧光成像[J]. 化工学报, 2020, 71(10): 4808-4819. |
Li X J, Sun W, Kang Y, et al. Synthesis of PEGylation hydroxyapatite drug delivery system and its dual channels fluorescence imaging[J]. CIESC Journal, 2020, 71(10): 4808-4819. | |
35 | Xu F, Li H, Yao Q, et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy[J]. Chemical Science, 2019, 10(45): 10586-10594. |
36 | Lu Y, Li H, Yao Q, et al. Lysozyme-targeted ratiometric fluorescent probe for SO2 in living cells[J]. Dyes and Pigments, 2020, 180: 108440. |
37 | 李海东. 长波长腈类荧光染料用于肿瘤的诊断与治疗[D]. 大连: 大连理工大学, 2019. |
Li H D. Long wavelength nitrile fluorescent dyes for tumor diagnosis and treatment[D]. Dalian: Dalian University of Technology, 2019. | |
38 | Zhang C, Wu J, Liu W, et al. Natural-origin hypocrellin-hsa assembly for highly efficient NIR light-responsive phototheranostics against hypoxic tumors[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 44989-44998. |
39 | Yu X, Deng Y, Zhang G, et al. Sorafenib-conjugated zinc phthalocyanine based nanocapsule for trimodal therapy in an orthotopic hepatocellular carcinoma xenograft mouse model[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17193-17206. |
40 | Zhang J, Zheng M, Xie Z. Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery[J]. Journal of Materials Chemistry B, 2016, 4(34): 5659-5663. |
41 | Jia Q, Ge J, Liu W, et al. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy[J]. Nanoscale, 2016, 8(26): 13067-13099. |
42 | Mandal S, Prasad S R, Mandal D, et al. Bovine serum albumin amplified reactive oxygen species generation from anthrarufin-derived carbon dot and concomitant nanoassembly for combination antibiotic–photodynamic therapy application[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33273-33284. |
43 | 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
44 | Jia Q, Ge J, Liu W, et al. Biocompatible iron phthalocyanine–albumin assemblies as photoacoustic and thermal theranostics in living mice[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21124-21132. |
45 | Yao Q, Li L, Huang X, et al. Photostable fluorescent tracker for imaging mitochondria with super resolution[J]. Analytical Chemistry, 2019, 91(24): 15777-15783. |
46 | Zhang L, Wang D, Yang K, et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation[J]. Advanced Science, 2018, 5(8): 1800049. |
47 | Yang Z, Wang J, Liu S, et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway[J]. Biomaterials, 2020, 229: 119580. |
48 | Yang L, Gao P, Huang Y, et al. Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer[J]. Chinese Chemical Letters, 2019, 30(6): 1293-1296. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[5] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[6] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[7] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[8] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[9] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[10] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[11] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[12] | Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698. |
[13] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
[14] | Qingyi LIU, Tong XIAO, Wenjie SUN, Jiahao ZHANG, Changhui LIU. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles [J]. CIESC Journal, 2022, 73(5): 1863-1882. |
[15] | Chaoqun XU, Juan YU, Yimin FAN, Jifu WANG, Fuxiang CHU. Chemical modification of nanocellulose via atom transfer radical polymerization: strategy, applications and challenges [J]. CIESC Journal, 2022, 73(3): 1022-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||