CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3084-3094.DOI: 10.11949/0438-1157.20201682
• Special column for comprehensive utilization of salt lake resouces in Qinghai • Previous Articles Next Articles
SONG Yihui1(),LEI Zhiyi2,FAN Guoli1(),YANG Lan1,LIN Yanjun1,3(),LI Feng1
Received:
2020-11-25
Revised:
2021-02-19
Online:
2021-06-05
Published:
2021-06-05
Contact:
FAN Guoli,LIN Yanjun
宋奕慧1(),雷志轶2,范国利1(),杨兰1,林彦军1,3(),李峰1
通讯作者:
范国利,林彦军
作者简介:
宋奕慧(1995—),女,硕士研究生,基金资助:
CLC Number:
SONG Yihui, LEI Zhiyi, FAN Guoli, YANG Lan, LIN Yanjun, LI Feng. Preparation and property of high specific surface solid base catalyst based on LiAl-LDH /C hybrid precursor[J]. CIESC Journal, 2021, 72(6): 3084-3094.
宋奕慧, 雷志轶, 范国利, 杨兰, 林彦军, 李峰. 基于LiAl-LDH/C杂化前体制备高比表面固体碱催化剂及其催化性能研究[J]. 化工学报, 2021, 72(6): 3084-3094.
Add to citation manager EndNote|Ris|BibTeX
Samples | hkl | d / nm | a / nm | c / nm | Da / nm | Dc / nm |
---|---|---|---|---|---|---|
LiAl-LDHs-150-0 | (003) (110) | 0.7360 0.1466 | 0.2932 | 2.208 | 35.37 | 30.26 |
LiAl-LDHs-150-1 | (003) (110) | 0.7725 0.1474 | 0.2948 | 2.318 | 14.41 | 6.994 |
LiAl-LDHs-150-3 | (003) (110) | 0.7583 0.1471 | 0.2942 | 2.2749 | 12.82 | 5.567 |
LiAl-LDHs-150-4 | (003) (110) | 0.7730 0.1475 | 0.2950 | 2.319 | 19.21 | 4.503 |
LiAl-LDHs-160-3 | (003) (110) | 0.7814 0.1530 | 0.3060 | 2.344 | 13.39 | 5.932 |
LiAl-LDHs-180-3 | (003) (110) | 0.7729 0.1521 | 0.3042 | 2.319 | 17.07 | 6.222 |
Table 1 XRD parameters of LiAl-LDHs-x-y prepared at different conditions
Samples | hkl | d / nm | a / nm | c / nm | Da / nm | Dc / nm |
---|---|---|---|---|---|---|
LiAl-LDHs-150-0 | (003) (110) | 0.7360 0.1466 | 0.2932 | 2.208 | 35.37 | 30.26 |
LiAl-LDHs-150-1 | (003) (110) | 0.7725 0.1474 | 0.2948 | 2.318 | 14.41 | 6.994 |
LiAl-LDHs-150-3 | (003) (110) | 0.7583 0.1471 | 0.2942 | 2.2749 | 12.82 | 5.567 |
LiAl-LDHs-150-4 | (003) (110) | 0.7730 0.1475 | 0.2950 | 2.319 | 19.21 | 4.503 |
LiAl-LDHs-160-3 | (003) (110) | 0.7814 0.1530 | 0.3060 | 2.344 | 13.39 | 5.932 |
LiAl-LDHs-180-3 | (003) (110) | 0.7729 0.1521 | 0.3042 | 2.319 | 17.07 | 6.222 |
Samples | Specific area/(m2·g-1) | Total volume/(ml·g-1) | Optimum pore size/nm |
---|---|---|---|
LiAl-MMO-150-0-500 | 123 | 0.2170 | 3.9 |
LiAl-MMO-150-1-500 | 225 | 1.0168 | 14.0 |
LiAl-MMO-150-3-500 | 229 | 0.8962 | 7.2 |
LiAl-MMO-150-4-500 | 241 | 1.2230 | 12.0 |
LiAl-MMO-160-3-500 | 206 | 0.5393 | 9.7 |
LiAl-MMO-180-3-500 | 178 | 1.0440 | 9.5 |
LiAl-MMO-150-3-400 | 232 | 0.9421 | 65 |
LiAl-MMO-150-3-700 | 94 | 0.6095 | 20.1 |
Table 2 Specific surface areas and pore distribution parameters of series of LiAl-MMO-x-y-z samples
Samples | Specific area/(m2·g-1) | Total volume/(ml·g-1) | Optimum pore size/nm |
---|---|---|---|
LiAl-MMO-150-0-500 | 123 | 0.2170 | 3.9 |
LiAl-MMO-150-1-500 | 225 | 1.0168 | 14.0 |
LiAl-MMO-150-3-500 | 229 | 0.8962 | 7.2 |
LiAl-MMO-150-4-500 | 241 | 1.2230 | 12.0 |
LiAl-MMO-160-3-500 | 206 | 0.5393 | 9.7 |
LiAl-MMO-180-3-500 | 178 | 1.0440 | 9.5 |
LiAl-MMO-150-3-400 | 232 | 0.9421 | 65 |
LiAl-MMO-150-3-700 | 94 | 0.6095 | 20.1 |
Samples | Number of base sites/(μmol of phenol·g-1) | Density of base sites/(μmol of phenol·m-2) |
---|---|---|
LiAl-MMO-150-0-500 | 306 | 2.49 |
LiAl-MMO-150-1-500 | 635 | 2.82 |
LiAl-MMO-150-3-500 | 855 | 3.74 |
LiAl-MMO-150-4-500 | 800 | 3.32 |
LiAl-MMO-160-3-500 | 730 | 3.54 |
LiAl-MMO-180-3-500 | 635 | 3.57 |
LiAl-MMO-150-3-400 | 582 | 2.51 |
LiAl-MMO-150-3-700 | 308 | 3.28 |
Table 3 Basic sites data of series of LiAl-MMO-x-y-z
Samples | Number of base sites/(μmol of phenol·g-1) | Density of base sites/(μmol of phenol·m-2) |
---|---|---|
LiAl-MMO-150-0-500 | 306 | 2.49 |
LiAl-MMO-150-1-500 | 635 | 2.82 |
LiAl-MMO-150-3-500 | 855 | 3.74 |
LiAl-MMO-150-4-500 | 800 | 3.32 |
LiAl-MMO-160-3-500 | 730 | 3.54 |
LiAl-MMO-180-3-500 | 635 | 3.57 |
LiAl-MMO-150-3-400 | 582 | 2.51 |
LiAl-MMO-150-3-700 | 308 | 3.28 |
1 | 乜贞, 伍倩, 卜令忠, 等. 国内外盐湖锂资源开发利用进展[J]. 中国盐业, 2015, (24): 45-50. |
Nie Z, Wu Q, Bu L Z, et al. Development and utilization of salt lake lithium resources at home and abroad [J]. China Salt Industry, 2015, (24): 45-50. | |
2 | 宋彭生, 李武, 孙柏, 等. 盐湖资源开发利用进展[J]. 无机化学学报, 2011, 27(5): 801-815. |
Song P S, Li W, Sun B, et al. Recent development on comprehensive utilization of salt lake resources[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(5): 801-815. | |
3 | 王志国. 盐湖锂资源开发利用与研究进展[J]. 广州化工, 2011, 39(7): 23-24, 38. |
Wang Z G. Research progress on development and utilization of lithium resource[J]. Guangzhou Chemical Industry, 2011, 39(7): 23-24, 38. | |
4 | 宋彭生. 盐湖及相关资源开发利用进展[J]. 盐湖研究, 2000, 8(1): 1-16. |
Song P S. Comprehensive utilization of salt lake and related resources[J]. Journal of Salt Lake Research, 2000, 8(1): 1-16. | |
5 | 马钥德. 我国盐湖资源概况[C]//中国化工学会无机盐学术年会, 2003. |
Ma Y D. Overview of salt lake resources in China[C]// Annual Meeting of Inorganic Salts of China Chemical Industry Association. 2003. | |
6 | 张苏江, 崔立伟, 孔令湖, 等. 国内外锂矿资源及其分布概述[J]. 有色金属工程, 2020, 10(10): 95-104. |
Zhang S J, Cui L W, Kong L H, et al. Summarize on the lithium mineral resources and their distribution at home and abroad[J]. Nonferrous Metals Engineering, 2020, 10(10): 95-104. | |
7 | 柴文帅. 新冠疫情影响下的全球锂资源供需情况分析[J]. 新材料产业, 2020, (4): 46-50. |
Chai W S. Analysis of global lithium resource supply and demand under the influence of COVID-19 [J]. Advanced Materials Industry, 2020, (4): 46-50. | |
8 | 王翘楚, 孙鑫, 郝瀚, 等. 锂的城市矿产利用: 前景、挑战及政策建议[J]. 科技导报, 2020, 38(15): 6-15. |
Wang Q C, Sun X, Hao H, et al. Urban mining of lithium: prospects, challenges and policy recommendations[J]. Science & Technology Review, 2020, 38(15): 6-15. | |
9 | 张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略[J]. 无机盐工业, 2020, 52(7): 1-7. |
Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China's lithium resources[J]. Inorganic Chemicals Industry, 2020, 52(7): 1-7. | |
10 | 张润泽. 锂——战略性新兴资源的关键[J]. 世界有色金属, 2020(11): 259-260. |
Zhang R Z. Lithium—key to strategic emerging resources[J]. World Nonferrous Metals, 2020(11): 259-260. | |
11 | 汪明泉. 柴达木盆地一里坪盐湖富锂卤水成因研究[D]. 北京: 中国地质大学(北京), 2020. |
Wang M Q. Origin of lithium-rich brine in Yiliping salt lake, Qaidam basin[D]. Beijing: ChinaUniversity of Geosciences, 2020. | |
12 | 陈玉明, 陈喜峰, 赵宏军, 等. 南美“锂三角”战略地位日益凸显[N]. 中国矿业报, 2020-4-29(1). |
Chen Y M, Chen X F, Zhao H J, et al. The strategic position of “Lithium Triangle” in South America is increasingly prominent[N]. China Mining News, 2020-4-29(1). | |
13 | Brindley G W, Kikkawa S. Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite[J]. Clays and Clay Minerals, 1980, 28(2): 87-91. |
14 | Reichle W T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals[J]. Journal of Catalysis, 1985, 94(2): 547-557. |
15 | Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications[J]. Catalysis Today, 1991, 11(2): 173-301. |
16 | 魏彤, 王谋华, 魏伟, 等. 固体碱催化剂[J]. 化学通报, 2002, 65(9): 594-600. |
Wei T, Wang M H, Wei W, et al. The investigation status and development trend of solid base catalysts[J]. Chemistry, 2002, 65(9): 594-600. | |
17 | Sideris P J, Nielsen U G, Gan Z H, et al. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J]. Science, 2008, 321(5885): 113-117. |
18 | Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
19 | 沈家骢. 超分子层状结构: 组装与功能[M]. 北京: 科学出版社, 2005. |
Shen J C, et al. Supramolecular Layer Structure: Assembly and Function[M]. Beijing: Science Press, 2005. | |
20 | Miyata S, Kumura T, Hattori H, et al. Physico-chemical properties and structure of magnesia-alumina[J]. Nippon Kagaku Zassi, 1971, 92(6): 514-519. |
21 | Taylor H F W. Crystal structures of some double hydroxide minerals[J]. Mineralogical Magazine, 1973, 39(304): 377-389. |
22 | Zou L, Xiang X, Fan J, et al. Single-source precursor to complex metal oxide monoliths with tunable microstructures and properties: the case of Mg-containing materials[J]. Chemistry of Materials, 2007, 19(26): 6518-6527. |
23 | Xiang X, Hima H I, Wang H, et al. Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor[J]. Chemistry of Materials, 2008, 20(3): 1173-1182. |
24 | 张毅. 镁基水滑石紫外阻隔材料的制备及在聚丙烯中的应用[D]. 北京: 中国科学院大学(中国科学院青海盐湖研究所), 2019. |
Zhang Y. Preparation of manganese-based layered double hydroxides UV shielding material and its application in polypropylene[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
25 | 阿旦春, 肖学英, 文静, 等. 氢氧化镁煅烧工艺和原料配比对氯氧镁水泥抗压强度的影响[J]. 盐湖研究, 2020, 28(3): 85-92. |
A D C, Xiao X Y, Wen J, et al. Influence of calcining process of magnesium hydroxide and raw material ratio on compressive strength of MOC based on orthogonal experiment[J]. Journal of Salt Lake Research, 2020, 28(3): 85-92. | |
26 | 绪连萧. 混合离子溶液中镁、锂分离与提取的反应-分离耦合方法的研究[D]. 北京: 北京化工大学, 2016. |
Xu L X. Research on separation and extraction Mg/Li from mixed ionic solutions with reaction-separation coupling technique[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
27 | 雷志轶. 新型高比表面固体碱催化剂制备、结构及其性能研究[D]. 北京: 北京化工大学, 2009. |
Lei Z Y. Investigations on synthesis, structure and properties of new-style high-surface-area solid base catalyst[D]. Beijing: Beijing University of Chemical Technology, 2009. | |
28 | 高志. 金属加氢催化剂活性位的精细调控及其催化生物质平台分子转化性能[D]. 北京: 北京化工大学, 2018. |
Gao Z. Fine control of active sites of metal hydrogenation catalysts and their performance for catalytic transformation of biomass platform molecules[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
29 | Gao Z, Yang L, Fan G L, et al. Promotional role of surface defects on carbon-supported ruthenium-based catalysts in the transfer hydrogenation of furfural[J]. ChemCatChem, 2016, 8(24): 3769-3779. |
30 | Titulaer M K, Jansen J B H, Geus J W. The quantity of reduced nickel in synthetic takovite: effects of preparation conditions and calcination temperature[J]. Clays Clay Miner., 1994, 42: 249-258. |
31 | Marezio M, Remeika J P. Polymorphism of LiMO2 compounds and high‐pressure single‐crystal synthesis of LiBO2 [J]. J. Chem. Phys., 1966, 44(19): 3143-3144. |
32 | 段雪, 张法智. 插层组装与功能材料[M]. 北京: 化学工业出版社, 2007. |
Duan X, Zhang F Z. Intercalation Assembly and Functional Materials [M]. Beijing: Chemical Industry Press, 2007. | |
33 | Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. 2nd ed. New York: Academic Press, 1982. |
34 | 田部浩三. 新固体酸和碱及其催化作用[M]. 郑禄彬, 译. 北京: 化学工业出版社, 1992. |
Tanabe Kozo. New Solid Acids and Bases and Their Catalytic Properties[M]. Zheng L B, trans. Beijing: Chemical Industry Press, 1992. | |
35 | 雷经新, 石秋杰. 固体碱催化剂在有机合成中的应用及进展[J]. 化工时刊, 2005, 19(2): 49-53. |
Lei J X, Shi Q J. Application and progress of solid base catalysts in organicsynthesis[J]. Chemical Industry Times, 2005, 19(2): 49-53. | |
36 | 辛勤. 固体催化剂研究方法[M]. 北京: 科学出版社, 2004. |
Xin Q. Solid Catalyst Research Methods [M]. Beijing: Science Press, 2004. | |
37 | Zhang M, Zhao Y, Liu Q, et al. A La-doped Mg-Al mixed metal oxide supported copper catalyst with enhanced catalytic performance in transfer dehydrogenation of 1-decanol[J]. Dalton Transactions (Cambridge, England), 2016, 45(3): 1093-1102. |
[1] | TIAN Rui, WANG Peili, LYU Chao, DUAN Xue. Three-dimensional fluorescent evaluation on dispersion state for inorganic nanofiller in organic-inorganic composites [J]. CIESC Journal, 2021, 72(6): 3002-3013. |
[2] | GAO Wa, RAN Xiangkun, ZHAO Hanqing, ZHAO Yufei. Research progress of catalytic materials based on Mg-based layered double hydroxides [J]. CIESC Journal, 2021, 72(6): 2934-2956. |
[3] | DU Dongdong, LIU Huang, MA Ruoyu, FENG Yongjun, LI Dianqing, TANG Pinggui. Performance of MgAl layered double hydroxides light stabilizer assembled via intermolecular forces [J]. CIESC Journal, 2021, 72(6): 3095-3104. |
[4] | Jie ZHAO,Yue GUO,Zhen SHEN,Lijun YANG,Qiang WU,Xizhang WANG,Zheng HU. Research progress of high-rate capacity layered double hydroxide supercapacitor materials [J]. CIESC Journal, 2020, 71(11): 4851-4872. |
[5] | Tianyi LAI,Jikang WANG,Tian LI,Sha BAI,Xiaojie HAO,Yufei ZHAO,Xue DUAN. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts [J]. CIESC Journal, 2020, 71(10): 4327-4349. |
[6] | ZHANG Yingxin, ZHOU Tao, MAO Juan, WU Xiaohui, YUAN Zhen. Efficient removal of Cr(Ⅵ) by thermal-modified layered double hydroxides (LDHs): adsorption behaviors, effect parameters and comparison with original LDHs [J]. , 2015, 66(S1): 228-236. |
[7] | LIU Ruping1,KONG Xianggui 2,YUE Zhao1,NIU Wencheng1,LIU Guohua1. Properties and application of layered double hydroxides for electrochemical biosensors [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2661-2667. |
[8] | WANG Tianlei,LIU Meitang,MA Hongwen. Recent advances in thin-film material based on layered double hydroxides via a layer-by-layer self-assembly method [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1584-1590. |
[9] | SUN Jinlu 1,2,ZHEN Weijun 1,2,LI Jin 1,2. Structure,properties and applications of LDHs [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 610-616. |
[10] | LIU Yang1,2,YI Huaifeng3,CHEN Yu1,2,WU Yulong2,CHEN Zeng1,YANG Mingde2,TONG Junmao1. Preparation of bildiesel from sorbifolia oil catalyzed by modified SBA-15 [J]. , 2011, 30(6): 1247-. |
[11] | CHENG Xiang, YE Jiexu, SUN Dezhi, CHEN Aiyan. Influence of Synthesis Temperature on Phosphate Adsorption by Zn-Al Layered Double Hydroxides in Excess Sludge Liquor [J]. , 2011, 19(3): 391-396. |
[12] | FAN Xinmei,ZHANG Dehu,HUANG Biao,WANG Huajie,WEI Tengyou,TONG Zhangfa. Preparation of solid base catalyst supported on bentonite and its application in synthesis of biodiesel [J]. , 2009, 28(11): 1951-. |
[13] | WEN Libai,WANG Yun,GUAN Yanping,HU Shengyang,HAN Heyou. Supported solid base catalyst KF/CaO/carclazyte for biodiesel preparation [J]. , 2009, 28(11): 1946-. |
[14] | WANG Angran, BAO Yongzhong, WENG Zhixue, HUANG Zhiming. Synthesis and Characterization of Proton-conducting Polymer Electrolytes Based on Acrylonitrile-Styrene Sulfonic Acid Copolymer/Layered Double Hydroxides Nanocomposites [J]. , 2008, 16(6): 938-943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||