CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1430-1437.DOI: 10.11949/0438-1157.20201929

• Process system engineering • Previous Articles     Next Articles

Identification of rules for optimal synthesis of ternary-distillation configuration based on decision tree

CHEN Xili1(),SUN Guoming1,JIA Shengkun1,LUO Yiqing1,YUAN Xigang1,2()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
    2.State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300354, China
  • Received:2020-12-25 Revised:2020-12-30 Online:2021-03-05 Published:2021-03-05
  • Contact: YUAN Xigang

基于决策树的三组元精馏序列结构最优合成规则识别

陈熙理1(),孙国铭1,贾胜坤1,罗祎青1,袁希钢1,2()   

  1. 1.天津大学化工学院,天津 300354
    2.化学工程国家重点实验室(天津大学),天津 300354
  • 通讯作者: 袁希钢
  • 作者简介:陈熙理(1996—),女,硕士研究生,chen_xl@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21676783)

Abstract:

Aiming at the optimized synthesis of the structure of the three-component distillation system, a data-driven classification regression decision tree (CART) model based on information entropy minimization is proposed. Rigorous simulation based optimization results in the literature for ternary distillation configuration synthesis are used to construct data set, which include four ternary mixtures, 34 compositions and seven candidates for distillation configuration. A decision tree trained by using the data and a set of rules for the decision on the optimal ternary distillation configuration is identified. The model test result shows that the classification accuracy of the decision tree model is 88.2%, and the influential factors and the order of their importance are identified.

Key words: ternary-distillation configuration, optimal synthesis, decision tree, Shannon entropy minimization, decision rules

摘要:

针对三组元精馏系统结构的优化合成,提出一种数据驱动的基于信息熵最小化的分类回归决策树(CART)模型。三组元精馏优化数据采用文献中严格模拟优化的结果,数据包含4种三组元混合物、34种进料组成以及7个候选精馏序列结构的最优化设计结果,生成数据集用来训练CART决策树。由决策树训练结果给出了三组元精馏结构最优设计决策规则,模型测试结果显示本文提出的决策树模型对数据集范围内三组元物系精馏结构决策的准确率为88.2%,同时表明了影响三组元最优精馏序列的主要影响因素及其重要性。

关键词: 三组元精馏序列结构, 最优合成, 决策树, 信息熵最小化, 决策规则

CLC Number: