CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4796-4807.DOI: 10.11949/0438-1157.20201770
• Separation engineering • Previous Articles Next Articles
Chuang LI1(),Yang ZHANG1(),Xiaojuan LIU1,Xuezhong WANG2()
Received:
2020-12-09
Revised:
2021-08-02
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yang ZHANG,Xuezhong WANG
通讯作者:
张扬,王学重
作者简介:
李闯(1994—),男,硕士研究生,基金资助:
CLC Number:
Chuang LI, Yang ZHANG, Xiaojuan LIU, Xuezhong WANG. Modeling and experimental study of additives on solution crystallization of aspirin[J]. CIESC Journal, 2021, 72(9): 4796-4807.
李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807.
Add to citation manager EndNote|Ris|BibTeX
Face | Multiplicity | 面积占比/% |
---|---|---|
(1 0 0) | 2 | 51.93 |
(1 1 0) | 4 | 10.42 |
(0 1 1) | 4 | 11.44 |
(0 0 2) | 2 | 25.39 |
(1 1 -1) | 4 | 0.60 |
(1 1 1) | 4 | 0.22 |
Table 1 Theoretical crystal habits and percentage of total crystal plane area obtained from AE model
Face | Multiplicity | 面积占比/% |
---|---|---|
(1 0 0) | 2 | 51.93 |
(1 1 0) | 4 | 10.42 |
(0 1 1) | 4 | 11.44 |
(0 0 2) | 2 | 25.39 |
(1 1 -1) | 4 | 0.60 |
(1 1 1) | 4 | 0.22 |
添加剂(聚合度) | Eads/(kcal/mol) | |||||
---|---|---|---|---|---|---|
(1 0 0) | (1 1 0) | (0 1 1) | (0 0 2) | (1 1 -1) | (1 1 1) | |
PVP(45) | -122.35 | -135.69 | -159.11 | -129.30 | -120.90 | -90.74 |
PVP(90) | -220.06 | -237.32 | -277.11 | -207.90 | -180.92 | -148.76 |
PVP(135) | -260.23 | -303.76 | -338.57 | -256.32 | -222.13 | -195.33 |
HPMC(100) | -301.15 | -211.30 | -197.18 | -311.26 | -268.76 | -268.81 |
Table 2 Adsorption energy of additives on different crystal faces of aspirin
添加剂(聚合度) | Eads/(kcal/mol) | |||||
---|---|---|---|---|---|---|
(1 0 0) | (1 1 0) | (0 1 1) | (0 0 2) | (1 1 -1) | (1 1 1) | |
PVP(45) | -122.35 | -135.69 | -159.11 | -129.30 | -120.90 | -90.74 |
PVP(90) | -220.06 | -237.32 | -277.11 | -207.90 | -180.92 | -148.76 |
PVP(135) | -260.23 | -303.76 | -338.57 | -256.32 | -222.13 | -195.33 |
HPMC(100) | -301.15 | -211.30 | -197.18 | -311.26 | -268.76 | -268.81 |
T/K | b1 | b2 | b3 | b4 | b5 | 最大溶解度Cmax×10-2/(g/g) | w×10-2 | RMSD×10-2 |
---|---|---|---|---|---|---|---|---|
278.15 | -2.105 | 1.990 | -13.57 | 18.80 | -16.62 | 13.21 | 8.772 | 0.1761 |
283.15 | -1.921 | 1.953 | -11.01 | 13.53 | -13.98 | 16.14 | 10.66 | 0.0716 |
293.15 | -1.538 | 1.895 | -7.609 | 1.179 | -0.708 | 24.20 | 12.80 | 0.1114 |
298.15 | -1.349 | 2.144 | -9.451 | 7.815 | -7.170 | 29.65 | 13.15 | 0.1393 |
303.15 | -1.130 | 1.716 | -6.801 | 2.970 | -3.928 | 36.17 | 13.53 | 0.1843 |
313.15 | -0.790 | 1.934 | -6.496 | 3.221 | -4.178 | 52.91 | 16.31 | 0.2273 |
323.15 | -0.436 | 2.340 | -9.745 | 17.81 | -17.69 | 78.37 | 20.21 | 0.3460 |
333.15 | -0.082 | 0.551 | 4.396 | -13.09 | 6.882 | 121.0 | 34.97 | 0.6620 |
Table 3 Mass solubility fitting parameters and maximum solubility of aspirin
T/K | b1 | b2 | b3 | b4 | b5 | 最大溶解度Cmax×10-2/(g/g) | w×10-2 | RMSD×10-2 |
---|---|---|---|---|---|---|---|---|
278.15 | -2.105 | 1.990 | -13.57 | 18.80 | -16.62 | 13.21 | 8.772 | 0.1761 |
283.15 | -1.921 | 1.953 | -11.01 | 13.53 | -13.98 | 16.14 | 10.66 | 0.0716 |
293.15 | -1.538 | 1.895 | -7.609 | 1.179 | -0.708 | 24.20 | 12.80 | 0.1114 |
298.15 | -1.349 | 2.144 | -9.451 | 7.815 | -7.170 | 29.65 | 13.15 | 0.1393 |
303.15 | -1.130 | 1.716 | -6.801 | 2.970 | -3.928 | 36.17 | 13.53 | 0.1843 |
313.15 | -0.790 | 1.934 | -6.496 | 3.221 | -4.178 | 52.91 | 16.31 | 0.2273 |
323.15 | -0.436 | 2.340 | -9.745 | 17.81 | -17.69 | 78.37 | 20.21 | 0.3460 |
333.15 | -0.082 | 0.551 | 4.396 | -13.09 | 6.882 | 121.0 | 34.97 | 0.6620 |
添加剂 | 统计数目 | 平均长径比 |
---|---|---|
0 | 60 | 1.93±0.32 |
0.05% PVP K13-18 | 60 | 1.58±0.26 |
0.01% PVP K29-32 | 72 | 1.63±0.22 |
0.05% PVP K29-32 | 73 | 1.39±0.24 |
0.1% PVP K29-32 | 64 | 1.10±0.21 |
0.05% PVP K88-96 | 80 | 1.22±0.22 |
0.01% HPMC | 52 | 3.81±1.25 |
0.05% HPMC | 66 | 6.19±2.01 |
0.1% HPMC | 78 | 7.62±2.41 |
Table 4 Experimental aspirin crystal aspect ratio under different additives
添加剂 | 统计数目 | 平均长径比 |
---|---|---|
0 | 60 | 1.93±0.32 |
0.05% PVP K13-18 | 60 | 1.58±0.26 |
0.01% PVP K29-32 | 72 | 1.63±0.22 |
0.05% PVP K29-32 | 73 | 1.39±0.24 |
0.1% PVP K29-32 | 64 | 1.10±0.21 |
0.05% PVP K88-96 | 80 | 1.22±0.22 |
0.01% HPMC | 52 | 3.81±1.25 |
0.05% HPMC | 66 | 6.19±2.01 |
0.1% HPMC | 78 | 7.62±2.41 |
实验 编号 | 添加剂 浓度/% | 晶种量/% | 降温速率/ (K/min) | 搅拌速率/(r/min) | 加水速率/(ml/min) |
---|---|---|---|---|---|
1 | 0 | 1 | 0.3 | 250 | 5 |
2 | 0.01 | 1 | 0.3 | 250 | 5 |
3 | 0.05 | 1 | 0.3 | 250 | 5 |
4 | 0.10 | 1 | 0.3 | 250 | 5 |
5 | 0.05 | 0 | 0.3 | 250 | 5 |
6 | 0.05 | 0.5 | 0.3 | 250 | 5 |
7 | 0.05 | 3 | 0.3 | 250 | 5 |
8 | 0.05 | 1 | 0.1 | 250 | 5 |
9 | 0.05 | 1 | 0.5 | 250 | 5 |
10 | 0.05 | 1 | 0.3 | 150 | 5 |
11 | 0.05 | 1 | 0.3 | 350 | 5 |
12 | 0.05 | 1 | 0.3 | 250 | 20 |
13 | 0.05 | 1 | 0.3 | 250 | 一次性倾倒 |
Table 5 Summary of single factor experiment conditions
实验 编号 | 添加剂 浓度/% | 晶种量/% | 降温速率/ (K/min) | 搅拌速率/(r/min) | 加水速率/(ml/min) |
---|---|---|---|---|---|
1 | 0 | 1 | 0.3 | 250 | 5 |
2 | 0.01 | 1 | 0.3 | 250 | 5 |
3 | 0.05 | 1 | 0.3 | 250 | 5 |
4 | 0.10 | 1 | 0.3 | 250 | 5 |
5 | 0.05 | 0 | 0.3 | 250 | 5 |
6 | 0.05 | 0.5 | 0.3 | 250 | 5 |
7 | 0.05 | 3 | 0.3 | 250 | 5 |
8 | 0.05 | 1 | 0.1 | 250 | 5 |
9 | 0.05 | 1 | 0.5 | 250 | 5 |
10 | 0.05 | 1 | 0.3 | 150 | 5 |
11 | 0.05 | 1 | 0.3 | 350 | 5 |
12 | 0.05 | 1 | 0.3 | 250 | 20 |
13 | 0.05 | 1 | 0.3 | 250 | 一次性倾倒 |
实验编号 | D10/μm | D50/μm | D90/μm | 松装密度/(g/cm3) | 振实密度/(g/cm3) | 休止角/(°) | 收率/% | CV/% |
---|---|---|---|---|---|---|---|---|
1 | 201 | 544 | 1030 | 0.41 | 0.52 | 43 | 88.91 | 56.37 |
2 | 144 | 438 | 886 | 0.58 | 0.67 | 33 | 88.61 | 62.74 |
3 | 144 | 363 | 712 | 0.72 | 0.78 | 26 | 88.33 | 57.13 |
4 | 107 | 270 | 496 | 0.71 | 0.75 | 29 | 88.15 | 53.37 |
5 | 71.2 | 269 | 521 | 0.39 | 0.51 | 45 | 88.73 | 61.04 |
6 | 105 | 291 | 549 | 0.53 | 0.63 | 30 | 88.65 | 58.01 |
7 | 139 | 558 | 1040 | 0.65 | 0.73 | 28 | 87.85 | 56.83 |
8 | 279 | 579 | 1080 | 0.61 | 0.73 | 31 | 88.75 | 51.13 |
9 | 147 | 437 | 1170 | 0.53 | 0.68 | 35 | 87.35 | 86.71 |
10 | 35.3 | 472 | 1110 | 0.43 | 0.56 | 41 | 88.55 | 83.96 |
11 | 121 | 358 | 901 | 0.68 | 0.73 | 30 | 88.43 | 80.66 |
12 | 86.6 | 294 | 570 | 0.73 | 0.77 | 26 | 88.41 | 58.21 |
13 | 50.8 | 542 | 988 | 0.70 | 0.75 | 30 | 88.17 | 64.13 |
原料 | 74.5 | 459 | 916 | 0.43 | 0.55 | 40 | — | 67.81 |
Table 6 Summary of experimental results
实验编号 | D10/μm | D50/μm | D90/μm | 松装密度/(g/cm3) | 振实密度/(g/cm3) | 休止角/(°) | 收率/% | CV/% |
---|---|---|---|---|---|---|---|---|
1 | 201 | 544 | 1030 | 0.41 | 0.52 | 43 | 88.91 | 56.37 |
2 | 144 | 438 | 886 | 0.58 | 0.67 | 33 | 88.61 | 62.74 |
3 | 144 | 363 | 712 | 0.72 | 0.78 | 26 | 88.33 | 57.13 |
4 | 107 | 270 | 496 | 0.71 | 0.75 | 29 | 88.15 | 53.37 |
5 | 71.2 | 269 | 521 | 0.39 | 0.51 | 45 | 88.73 | 61.04 |
6 | 105 | 291 | 549 | 0.53 | 0.63 | 30 | 88.65 | 58.01 |
7 | 139 | 558 | 1040 | 0.65 | 0.73 | 28 | 87.85 | 56.83 |
8 | 279 | 579 | 1080 | 0.61 | 0.73 | 31 | 88.75 | 51.13 |
9 | 147 | 437 | 1170 | 0.53 | 0.68 | 35 | 87.35 | 86.71 |
10 | 35.3 | 472 | 1110 | 0.43 | 0.56 | 41 | 88.55 | 83.96 |
11 | 121 | 358 | 901 | 0.68 | 0.73 | 30 | 88.43 | 80.66 |
12 | 86.6 | 294 | 570 | 0.73 | 0.77 | 26 | 88.41 | 58.21 |
13 | 50.8 | 542 | 988 | 0.70 | 0.75 | 30 | 88.17 | 64.13 |
原料 | 74.5 | 459 | 916 | 0.43 | 0.55 | 40 | — | 67.81 |
1 | Gupta K M, Yin Y N, Poornachary S K, et al. Atomistic simulation to understand anisotropic growth behavior of naproxen crystal in the presence of polymeric additives[J]. Crystal Growth & Design, 2019, 19(7): 3768-3776. |
2 | Jing D D, Liu A L, Wang J K, et al. Study on crystal morphology of penicillin sulfoxide in different solvents using binding energy[J]. Organic Process Research & Development, 2015, 19(3): 410-415. |
3 | Liang Z Z, Yi Q H, Wang W, et al. A systematic study of solvent effect on the crystal habit of dirithromycin solvates by computer simulation[J]. Computers & Chemical Engineering, 2014, 62: 56-61. |
4 | An J H, Choi G J, Kim W S. Polymorphic and kinetic investigation of adefovir dipivoxil during phase transformation[J]. International Journal of Pharmaceutics, 2012, 422(1/2): 185-193. |
5 | Parimaladevi P, Srinivasan K. Influence of supersaturation level on the morphology of α-lactose monohydrate crystals[J]. International Dairy Journal, 2014, 39(2): 301-311. |
6 | Wang C, Zhang X, Du W, et al. Effects of solvent and supersaturation on crystal morphology of cefaclor dihydrate: a combined experimental and computer simulation study[J]. CrystEngComm, 2016, 18(47): 9085-9094. |
7 | Liang Z Z, Zhang M, Wu F, et al. Supersaturation controlled morphology and aspect ratio changes of benzoic acid crystals[J]. Computers & Chemical Engineering, 2017, 99: 296-303. |
8 | Tan W H, Yang X Y, Duan X Z, et al. Understanding supersaturation-dependent crystal growth of L-alanine in aqueous solution[J]. Crystal Research and Technology, 2016, 51(1): 23-29. |
9 | 李兰菊, 李秀喜, 徐三. 阿司匹林结晶过程的在线分析[J]. 化工学报, 2018, 69(3): 1046-1052. |
Li L J, Li X X, Xu S. Online monitor of Aspirin crystallization process[J]. CIESC Journal, 2018, 69(3): 1046-1052. | |
10 | Yin Y N, Chow P S, Tan R B H. Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit[J]. Molecular Pharmaceutics, 2011, 8(5): 1910-1918. |
11 | Li Z H, Shi P, Yang Y, et al. Tuning crystallization and stability of the metastable polymorph of dl-methionine by a structurally similar additive[J]. CrystEngComm, 2019, 21(24): 3731-3739. |
12 | Zhang Y, Liu J J, Wan J, et al. Two dimensional population balance modelling of crystal growth behaviour under the influence of impurities[J]. Advanced Powder Technology, 2015, 26(2): 672-678. |
13 | Clydesdale G, Thomson G B, Walker E M, et al. A molecular modeling study of the crystal morphology of adipic acid and its habit modification by homologous impurities[J]. Crystal Growth & Design, 2005, 5(6): 2154-2163. |
14 | Weissbuch I, Lahav M, Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation[J]. Crystal Growth & Design, 2003, 3(2): 125-150. |
15 | Kuvadia Z B, Doherty M F. Effect of structurally similar additives on crystal habit of organic molecular crystals at low supersaturation[J]. Crystal Growth & Design, 2013, 13(4): 1412-1428. |
16 | Poornachary S K, Lau G, Chow P S, et al. The effect and counter-effect of impurities on crystallization of an agrochemical active ingredient: stereochemical rationalization and nanoscale crystal growth visualization[J]. Crystal Growth & Design, 2011, 11(2): 492-500. |
17 | Tian F, Baldursdottir S, Rantanen J. Effects of polymer additives on the crystallization of hydrates: a molecular-level modulation[J]. Molecular Pharmaceutics, 2009, 6(1): 202-210. |
18 | Vetter T, Mazzotti M, Brozio J. Slowing the growth rate of ibuprofen crystals using the polymeric additive pluronic F127[J]. Crystal Growth & Design, 2011, 11(9): 3813-3821. |
19 | Klapwijk A R, Simone E, Nagy Z K, et al. Tuning crystal morphology of succinic acid using a polymer additive[J]. Crystal Growth & Design, 2016, 16(8): 4349-4359. |
20 | Ilevbare G A, Liu H Y, Edgar K J, et al. Effect of binary additive combinations on solution crystal growth of the poorly water-soluble drug, ritonavir[J]. Crystal Growth & Design, 2012, 12(12): 6050-6060. |
21 | Simone E, Cenzato M V, Nagy Z K. A study on the effect of the polymeric additive HPMC on morphology and polymorphism of ortho-aminobenzoic acid crystals[J]. Journal of Crystal Growth, 2016, 446: 50-59. |
22 | Gao Y, Olsen K W. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals[J]. Journal of Pharmaceutical Sciences, 2015, 104(7): 2132-2141. |
23 | Han D D, Yu B, Liu Y M, et al. Effects of additives on the morphology of thiamine nitrate: the great difference of two kinds of similar additives[J]. Crystal Growth & Design, 2018, 18(2): 775-785. |
24 | Mao X L, Song X F, Lu G M, et al. Effect of additives on the morphology of calcium sulfate hemihydrate: experimental and molecular dynamics simulation studies[J]. Chemical Engineering Journal, 2015, 278: 320-327. |
25 | Su N N, Wang Y L, Xiao Y, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1705-1713. |
26 | Donnamaria M C, Xammar Oro J R. The role of hydrogen bonds in an aqueous solution of acetylsalicylic acid: a molecular dynamics simulation study[J]. Journal of Molecular Modeling, 2011, 17(10): 2485-2490. |
27 | 于红琴. 卡马西平多晶型的研究[D].广州:华南理工大学, 2016. |
Yu H Q. Study on the polymorph of carbamazepine [D].Guangzhou: South China University of Technology, 2016. | |
28 | Zhan N X, Zhang Y, Wang X Z. Solubility of N-tert-butylbenzothiazole-2-sulfenamide in several pure and binary solvents[J]. Journal of Chemical & Engineering Data, 2019, 64(3): 1051-1062. |
29 | Zhang Y, Jiang Y B, Zhang D K, et al. Metastable zone width, crystal nucleation and growth kinetics measurement in anti-solvent crystallization of β-artemether in the mixture of ethanol and water[J]. Chemical Engineering Research and Design, 2015, 95: 187-194. |
30 | 杨丽君, 刘茜, 杨胜勇, 等. 从头算方法研究五元杂环与苯环相互作用[J]. 计算机与应用化学, 2012, 29(4): 461-464. |
Yang L J, Liu Q, Yang S Y, et al. Ab initio calculations of interactional energies between penta-heterocycles and benzene[J]. Computers and Applied Chemistry, 2012, 29(4): 461-464. | |
31 | Pudasaini N, Upadhyay P P, Parker C R, et al. Downstream processability of crystal habit-modified active pharmaceutical ingredient[J]. Organic Process Research & Development, 2017, 21(4): 571-577. |
32 | Wu K, Ma C Y, Liu J J, et al. Measurement of crystal face specific growth kinetics[J]. Crystal Growth & Design, 2016, 16(9): 4855-4868. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[13] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[14] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[15] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||