1 |
Lines J, Davis L M, Hills J, et al. A shapelet transform for time series classification[C]∥Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD'12. August12-16, 2012.
|
|
Beijing, China. New York: ACM Press, 2012: 289-297.
|
2 |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
3 |
Lee K B, Cheon S, Kim C O. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(2): 135-142.
|
4 |
Janssens O, Slavkovikj V, Vervisch B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345.
|
5 |
Yang B, Li H G. A novel convolutional neural network based approach to predictions of process dynamic time delay sequences[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 56-61.
|
6 |
张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017, 68(9): 3501-3510.
|
|
Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510.
|
7 |
易令, 吕忠元, 丁进良, 等. 面向原油总氢物性预测的数据扩增预处理方法[J]. 控制与决策, 2018, 33(12): 2153-2160.
|
|
Yi L, Lyu Z Y, Ding J L, et al. Data pretreatment approach for crude oil hydrogen properties prediction[J]. Control and Decision, 2018, 33(12): 2153-2160.
|
8 |
Wang Y J, Li H G. Industrial process time-series modeling based on adapted receptive field temporal convolution networks concerning multi-region operations[J]. Computers & Chemical Engineering, 2020, 139: 106877.
|
9 |
Wang Y J, Zhang Y C, Li H G. Adapted receptive field temporal convolutional networks with bar-shaped structures tailored to industrial process operation models[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5482-5490.
|
10 |
Keogh E, Lin J. Clustering of time-series subsequences is meaningless: implications for previous and future research[J]. Knowledge and Information Systems, 2005, 8(2): 154-177.
|
11 |
Kumar M, Patel N R, Woo J. Clustering seasonality patterns in the presence of errors[C]∥Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '02. July23-26, 2002.
|
|
Edmonton, Alberta, Canada. New York: ACM Press, 2002: 557-563.
|
12 |
Begum N, Ulanova L, Wang J, et al. Accelerating dynamic time warping clustering with a novel admissible pruning strategy[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney NSW Australia. New York, NY, USA: ACM, 2015: 49-58.
|
13 |
Lin Y P, Yang Y W. Stock markets forecasting based on fuzzy time series model[C]∥2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. November 20-22, 2009, Shanghai, China. IEEE, 2009: 782-786.
|
14 |
Fu T, Chung F, Ng V, et al. Pattern discovery from stock time series using self-organizing maps[EB/OL]. [2021-01-27].
|
15 |
Akatsuka S, Noda M, Sugimoto K. Similarity analysis of sequential alarms in plant operation data by using levenshtein distance[J]. Kagaku Kogaku Ronbunshu, 2013, 39(4): 352-358.
|
16 |
Chen G C, Liu Y, Ge Z Q. K-means Bayes algorithm for imbalanced fault classification and big data application[J]. Journal of Process Control, 2019, 81: 54-64.
|
17 |
Luo F L. An improved K-means algorithm and its application in customer classification of network enterprises[J]. Applied Mechanics and Materials, 2014, 543/544/545/546/547: 2124-2127.
|
18 |
Schölkopf B, Platt J. A local learning approach for clustering[M].Advances in Neural Information Processing Systems 19: Conference. MIT Press, 2007: 1529-1536.
|
19 |
Li J F, Li J S, He H Q. A simple and accurate approach to hierarchical clustering[J]. Journal of Computational Information Systems, 2011, 7(7): 2577-2584.
|
20 |
朱坚, 杨博, 王永健, 等. 一种新型的基于Levenshtein距离层次聚类的时序操作优化方法[J]. 化工学报, 2019, 70(2): 581-589.
|
|
Zhu J, Yang B, Wang Y J, et al. New operation optimization method with time series based on Levenshtein distance hierarchical clustering[J]. CIESC Journal, 2019, 70(2): 581-589.
|
21 |
Xu D K, Tian Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2): 165-193.
|
22 |
Bouguettaya A, Yu Q, Liu X M, et al. Efficient agglomerative hierarchical clustering[J]. Expert Systems with Applications, 2015, 42(5): 2785-2797.
|
23 |
Putera Utama Siahaan A, Aryza S, Hariyanto E, et al. Combination of levenshtein distance and Rabin-karp to improve the accuracy of document equivalence level[J]. International Journal of Engineering & Technology, 2018, 7(2.27): 17.
|
24 |
Levenshtein V. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J]. Soviet Physics Doklady, 1966,10(8): 707-710.
|
25 |
Ho T, Oh S R, Kim H. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations[J]. PLoS One, 2017, 12(10): e0186251.
|
26 |
Lin J, Keogh E, Lonardi S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]∥Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery - DMKD '03. June13, 2003.
|
|
San Diego, California. New York: ACM Press, 2003:2.
|
27 |
Lin J, Keogh E, Wei L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144.
|
28 |
Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 349-371.
|
29 |
Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263-286.
|
30 |
李海林, 郭崇慧. 基于云模型的时间序列分段聚合近似方法[J]. 控制与决策, 2011, 26(10): 1525-1529.
|
|
Li H L, Guo C H. Piecewise aggregate approximation method based on cloud model for time series[J]. Control and Decision, 2011, 26(10): 1525-1529.
|
31 |
Larsen R J, Marx M L. An Introduction to Mathematical Statistics and Its Applications[M]. Upper Saddle River:Prentice-Hall, 1981.
|