CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4838-4846.DOI: 10.11949/0438-1157.20210272
• Process system engineering • Previous Articles Next Articles
Yegang LIU1(),Zhonglin ZHANG1(),Qiwang HOU1,Jingxuan YANG1,Dongliang CHEN1,2,Xiaogang HAO1()
Received:
2021-02-18
Revised:
2021-06-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhonglin ZHANG,Xiaogang HAO
刘叶刚1(),张忠林1(),侯起旺1,杨景轩1,陈东良1,2,郝晓刚1()
通讯作者:
张忠林,郝晓刚
作者简介:
刘叶刚(1996—),男,硕士研究生,基金资助:
CLC Number:
Yegang LIU, Zhonglin ZHANG, Qiwang HOU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO. Process design and simulation of synthesis gas to methanol in TBCFB system[J]. CIESC Journal, 2021, 72(9): 4838-4846.
刘叶刚, 张忠林, 侯起旺, 杨景轩, 陈东良, 郝晓刚. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846.
Add to citation manager EndNote|Ris|BibTeX
单元 | 物流类型 | 物性方法 |
---|---|---|
低温甲醇洗 | 非理想、极性 | PSRK[ |
甲醇合成 | 常规 | PENG-ROB[ |
甲醇精馏 | 常规 | NRTL[ |
Table 1 Selection of property methods
单元 | 物流类型 | 物性方法 |
---|---|---|
低温甲醇洗 | 非理想、极性 | PSRK[ |
甲醇合成 | 常规 | PENG-ROB[ |
甲醇精馏 | 常规 | NRTL[ |
CO | H2 | CO2 | CH4 | H2O | H2S |
---|---|---|---|---|---|
0.2733 | 0.6183 | 0.1040 | 0.0011 | 0.0015 | 0.0018 |
Table 2 Mole fraction of syngas in TBCFB system
CO | H2 | CO2 | CH4 | H2O | H2S |
---|---|---|---|---|---|
0.2733 | 0.6183 | 0.1040 | 0.0011 | 0.0015 | 0.0018 |
组分 | 模拟结果/% | 工业数据/% | 误差/% |
---|---|---|---|
净化气 | |||
CO | 29.34 | 29.54 | 0.68 |
H2 | 67.46 | 66.81 | 0.97 |
CO2 | 2.99 | 3.00 | 0.03 |
H2S | <0.1×10-6 | <0.1×10-6 | — |
CH4 | 0.19 | 0.03 | — |
CH3OH | 0.006 | 0.01 | — |
粗甲醇 | |||
CH3OH | 94.115 | 94.17 | 0.056 |
CH3OCH3 | 0.1708 | 0.017 | 0.47 |
C2H5OH | 0.0748 | 0.08 | 6.5 |
C4H10O | 0.2703 | 0.27 | 0.11 |
H2O | 5.3691 | 5.31 | 1.11 |
精甲醇 | |||
CH3OH | 99.95 | >99.9 | |
CH3OCH3 | trace | — | |
C2H5OH | 0.05 | — | |
C4H10O | trace | — | |
H2O | trace | — |
Table 3 Simulation results compared to industrial data
组分 | 模拟结果/% | 工业数据/% | 误差/% |
---|---|---|---|
净化气 | |||
CO | 29.34 | 29.54 | 0.68 |
H2 | 67.46 | 66.81 | 0.97 |
CO2 | 2.99 | 3.00 | 0.03 |
H2S | <0.1×10-6 | <0.1×10-6 | — |
CH4 | 0.19 | 0.03 | — |
CH3OH | 0.006 | 0.01 | — |
粗甲醇 | |||
CH3OH | 94.115 | 94.17 | 0.056 |
CH3OCH3 | 0.1708 | 0.017 | 0.47 |
C2H5OH | 0.0748 | 0.08 | 6.5 |
C4H10O | 0.2703 | 0.27 | 0.11 |
H2O | 5.3691 | 5.31 | 1.11 |
精甲醇 | |||
CH3OH | 99.95 | >99.9 | |
CH3OCH3 | trace | — | |
C2H5OH | 0.05 | — | |
C4H10O | trace | — | |
H2O | trace | — |
项目 | 常规过程/kW | SHR过程/kW | 节约率/% |
---|---|---|---|
低温甲醇洗 | |||
Cooling | 2126 | 1500 | 29.4 |
Heating | 1466 | 736 | 49.8 |
WCOMP | — | 117 | — |
QCons | 1466 | 1087 | 25.8 |
甲醇精馏 | |||
Cooling | 14745 | 3763 | 69.5 |
Heating | 15411 | 0 | 100 |
WCOMP | — | 3480 | — |
QCons | 15411 | 10440 | 32.3 |
Table 4 Comparison of results of the conventional process and SHR process
项目 | 常规过程/kW | SHR过程/kW | 节约率/% |
---|---|---|---|
低温甲醇洗 | |||
Cooling | 2126 | 1500 | 29.4 |
Heating | 1466 | 736 | 49.8 |
WCOMP | — | 117 | — |
QCons | 1466 | 1087 | 25.8 |
甲醇精馏 | |||
Cooling | 14745 | 3763 | 69.5 |
Heating | 15411 | 0 | 100 |
WCOMP | — | 3480 | — |
QCons | 15411 | 10440 | 32.3 |
1 | Dai S P. BP statistical review of world energy[EB/OL]. [2018-06]. . |
2 | Crompton P, Wu Y R. Energy consumption in China: past trends and future directions[J]. Energy Economics, 2005, 27(1): 195-208. |
3 | 刘文革, 韩甲业, 熊志军, 等. 我国新型煤化工产业发展现状及趋势[J]. 中国煤炭, 2015, 41(3): 81-85. |
Liu W G, Han J Y, Xiong Z J, et al. The current developmental situation and trends of the new coal chemical industry[J]. China Coal, 2015, 41(3): 81-85. | |
4 | Yang C J, Jackson R B. China's growing methanol economy and its implications for energy and the environment[J]. Energy Policy, 2012, 41: 878-884. |
5 | Li C H, Bai H T, Lu Y Y, et al. Life-cycle assessment for coal-based methanol production in China[J]. Journal of Cleaner Production, 2018, 188: 1004-1017. |
6 | Liu Y G, Li G X, Chen Z R, et al. Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment[J]. Energy, 2020, 204: 117961. |
7 | Helgason R, Cook D, Davíðsdóttir B. An evaluation of the cost-competitiveness of maritime fuels—a comparison of heavy fuel oil and methanol (renewable and natural gas) in Iceland[J]. Sustainable Production and Consumption, 2020, 23: 236-248. |
8 | Qin Z, Tang Y T, Zhang Z X, et al. Techno-economic-environmental analysis of coal-based methanol and power poly-generation system integrated with biomass co-gasification and solar based hydrogen addition[J]. Energy Conversion and Management, 2021, 228: 113646. |
9 | Xu X Y, Liu Y, Zhang F, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68. |
10 | Khalafalla S S, Zahid U, Abdul Jameel A G, et al. Conceptual design development of coal-to-methanol process with carbon capture and utilization[J]. Energies, 2020, 13(23): 6421. |
11 | 叶鑫, 丁干红. 夹点技术在煤气化制甲醇工艺中的应用[J]. 煤化工, 2010, 38(3): 1-6. |
Ye X, Ding G H. Application of pinch technology in the coal-to-methanol process[J]. Coal Chemical Industry, 2010, 38(3): 1-6. | |
12 | 刘霞. 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州: 华南理工大学, 2016. |
Liu X. The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou: South China University of Technology, 2016. | |
13 | Tsutsumi A, Guan G Q, Fushimi C, et al. Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and a bubbling fluidized bed[C]//Fluidization 􀃼: New Paradigm in Fluidization Engineering. Korea, 2010: 407-414. |
14 | 岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1): 88-94. |
Cen J M, Fang M X, Wang Q H, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 88-94. | |
15 | 王亚雄, 杨景轩, 张忠林, 等. 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604. |
Wang Y X, Yang J X, Zhang Z L, et al. TBCFB system simulation and optimization for pyrolysis-gasification-combustion of low rank coal [J]. CIESC Journal, 2018, 69(8): 3596-3604. | |
16 | Guan G Q, Fushimi C, Tsutsumi A, et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—advantages and challenges[J]. Particuology, 2010, 8(6): 602-606. |
17 | Fushimi C, Ishizuka M, Guan G Q, et al. Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux[J]. Advanced Powder Technology, 2014, 25(1): 379-388. |
18 | Cheng Y P, Guan G Q, Ishizuka M, et al. Numerical simulations and experiments on heat transfer around a probe in the downer reactor for coal gasification[J]. Powder Technology, 2013, 235: 359-367. |
19 | 王俊丽. 低阶煤热解动力学特性及与生物质共热解、热解产物深加工试验研究[D]. 太原: 太原理工大学, 2017. |
Wang J L. Kinetics of low rank coal pyrolysis and co-pyrolysis with biomass and deep processing of pyrolysis-derived products[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
20 | 冯垣公. 半焦在可视化流化床的中低温水蒸气气化实验研究[D]. 太原: 太原理工大学, 2019. |
Feng Y G. Experimental Study on medium and low temperature steam gasification of semi-coke in visual fluidized bed[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
21 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
22 | Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
23 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation [J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
24 | 韩燕. 某厂煤制甲醇工艺中低温甲醇洗装置的改造及优化研究[D]. 大连: 大连理工大学, 2014. |
Han Y. The study on revamp and optimization of rectisol unit in a coal-to-methanol plant[D]. Dalian: Dalian University of Technology, 2014. | |
25 | 谢克昌, 房鼎业. 甲醇工艺学[M]. 北京: 化学工业出版社, 2010: 82. |
Xie K C, Fang D Y. Methanol Technology[M]. Beijing: Chemical Industry Press, 2010: 82. | |
26 | 边兴海. 低压法焦炉气制甲醇的影响因素探讨[J]. 能源化工, 2016, 37(6): 39-45. |
Bian X H. Discussion on the influence factors of synthesizing methanol by coke-oven in low pressure[J]. Energy Chemical Industry, 2016, 37(6): 39-45. | |
27 | Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57. |
28 | Sharma I, Hoadley A F A, Mahajani S M, et al. Multi-objective optimisation of a Rectisol™ process for carbon capture[J]. Journal of Cleaner Production, 2016, 119: 196-206. |
29 | 蒋朝俊. C307型催化剂在年产20万吨甲醇装置上的应用[D]. 上海: 华东理工大学, 2011. |
Jiang Z J. The application of C307 catalyst in 200kt/a methanol synthesis plant[D]. Shanghai: East China University of Science and Technology, 2011. | |
30 | 王绍云. 甲醇精馏系统的模拟与优化研究[D]. 北京: 北京化工大学, 2014. |
Wang S Y. Simulation and optimization of the methanol distillation system[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
31 | Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193. |
32 | Xia H, Ye Q, Feng S Y, et al. A novel energy-saving pressure swing distillation process based on self-heat recuperation technology[J]. Energy, 2017, 141: 770-781. |
33 | Douglas A P, Hoadley A F A. A process integration approach to the design of the two- and three-column methanol distillation schemes[J]. Applied Thermal Engineering, 2006, 26(4): 338-349. |
34 | Xia H, Ye Q, Feng S Y, et al. Energy-efficient design of downstream separation to produce n-butanol by several heat-integrated technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13205-13216. |
35 | Li J, Zhang F J, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[9] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[10] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[13] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[14] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[15] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||