1 |
宋永吉, 熊杰明, 梁克民. 用复合化学镀层强化沸腾传热[J]. 化工学报, 2002, 53(11): 1202-1205.
|
|
Song Y J, Xiong J M, Liang K M. Pool boiling heat transfer on surfaces enhanced by chemical plating[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(11): 1202-1205.
|
2 |
Chen R K, Lu M C, Srinivasan V, et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters, 2009, 9(2): 548-553.
|
3 |
Li D, Wu G S, Wang W, et al. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires[J]. Nano Letters, 2012, 12(7): 3385-3390.
|
4 |
Kim J M, Park S C, Kong B, et al. Effect of porous graphene networks and micropillar arrays on boiling heat transfer performance[J]. Experimental Thermal and Fluid Science, 2018, 93: 153-164.
|
5 |
Sudhakar S, Weibel J A, Zhou F, et al. The role of vapor venting and liquid feeding on the dryout limit of two-layer evaporator wicks[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119063.
|
6 |
Nikolayev V S, Chatain D, Garrabos Y, et al. Experimental evidence of the vapor recoil mechanism in the boiling crisis[J]. Physical Review Letters, 2006, 97(18): 184503.
|
7 |
Kandlikar S G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Journal of Heat Transfer, 2001, 123(6): 1071-1079.
|
8 |
Rahman M M, Ölçeroğlu E, McCarthy M. Role of wickability on the critical heat flux of structured superhydrophilic surfaces[J]. Langmuir, 2014, 30(37): 11225-11234.
|
9 |
黄金印, 屈治国, 李定国, 等. 紫铜纤维毡水平表面的池沸腾换热性能[J]. 化工学报, 2011, 62: 26-30.
|
|
Huang J Y, Qu Z G, Li D G, et al. Heat transfer performance of pool boiling on horizontal surface sintered with copper fiber felt[J]. CIESC Journal, 2011, 62: 26-30.
|
10 |
程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 1231-1235.
|
|
Cheng Y, Li J X, Mo G D. Pool boiling heat transfer of water in porous copper foam[J]. CIESC Journal, 2013, 64(4): 1231-1235.
|
11 |
Wen R F, Xu S S, Lee Y C, et al. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures[J]. Nano Energy, 2018, 51: 373-382.
|
12 |
Yin L F, Jia L. Confined bubble growth and heat transfer characteristics during flow boiling in microchannel[J]. International Journal of Heat and Mass Transfer, 2016, 98: 114-123.
|
13 |
Hong F J, Cheng P, Wu H Y, et al. Evaporation/boiling heat transfer on capillary feed copper particle sintered porous wick at reduced pressure[J]. International Journal of Heat and Mass Transfer, 2013, 63: 389-400.
|
14 |
Qu Z G, Xu Z G, Zhao C Y, et al. Experimental study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional V-shaped groove in saturated water[J]. International Journal of Multiphase Flow, 2012, 41: 44-55.
|
15 |
Ze H J, Wu F F, Chen S H, et al. Superhydrophilic composite structure of copper microcavities and nanocones for enhancing boiling heat transfer[J]. Advanced Materials Interfaces, 2020, 7(14): 2000482.
|
16 |
Song Y, Gong S, Vaartstra G, et al. Microtube surfaces for the simultaneous enhancement of efficiency and critical heat flux during pool boiling[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12629-12635.
|
17 |
Wen R F, Li Q, Wang W, et al. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65.
|
18 |
Deng D X, Feng J Y, Huang Q S, et al. Pool boiling heat transfer of porous structures with reentrant cavities[J]. International Journal of Heat and Mass Transfer, 2016, 99: 556-568.
|
19 |
Cai Q J, Bhunia A. High heat flux phase change on porous carbon nanotube structures[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5544-5551.
|
20 |
Thiagarajan S J, Yang R G, King C, et al. Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1297-1315.
|
21 |
Kiyomura I S, Nunes J M, Souza R R, et al. Effect of microfin surfaces on boiling heat transfer using HFE-7100 as working fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 1-13.
|
22 |
Okayama S, Iwata K, Shinmoto Y, et al. Improvement of cooling performance for electronic devices by nucleate boiling of immisible mixtures[J]. Journal of Physics: Conference Series, 2016, 745: 032073.
|
23 |
Yamasaki Y, Kita S, Iwata K, et al. Heat transfer in boiling of immiscible mixtures[J]. Interfacial Phenomena and Heat Transfer, 2015, 3(1): 19-39.
|
24 |
Kobayashi H, Ohtani N, Ohta H. Boiling heat transfer characteristics of immiscible liquid mixtures[C]//Proc. 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2012: 771-776.
|
25 |
Onishi S, Ohta H, Ohtani N, et al. Boiling heat transfer by nucleate boiling of immiscible liquids[J]. Interfacial Phenomena and Heat Transfer, 2013, 1(1): 63-80.
|
26 |
Kawanami O, Matsuhiro K, Hara Y, et al. Liquid-liquid interfacial instability model for boiling refrigerant transition by pool boiling of immiscible mixtures[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118826.
|
27 |
Li J, Fu W, Zhang B, et al. Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling[J]. ACS Nano, 2019, 13(12): 14080-14093.
|
28 |
Zuber N. Hydrodynamic aspects of boiling heat transfer (thesis)[R]. Office of Scientific and Technical Information (OSTI), 1959.
|
29 |
Cao Z, Wu Z, Sundén B. Pool boiling of NOVEC-649 on microparticle-coated and nanoparticle-coated surfaces[J]. Heat Transfer Engineering, 2021, 42(19/20): 1732-1747.
|
30 |
Wang Q, Chen R. Ultrahigh flux thin film boiling heat transfer through nanoporous membranes[J]. Nano Letters, 2018, 18(5): 3096-3103.
|
31 |
Greene G A, Chen J C, Conlin M T. Onset of entrainment between immiscible liquid layers due to rising gas bubbles[J]. International Journal of Heat and Mass Transfer, 1988, 31(6): 1309-1317.
|