CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5936-5954.DOI: 10.11949/0438-1157.20211345
• Reviews and monographs • Previous Articles Next Articles
Huahai ZHANG(),Yuelin WANG,Banghao LI,Tiefeng WANG()
Received:
2021-09-16
Revised:
2021-11-25
Online:
2021-12-22
Published:
2021-12-05
Contact:
Tiefeng WANG
通讯作者:
王铁峰
作者简介:
张华海(1995—),男,博士研究生,基金资助:
CLC Number:
Huahai ZHANG, Yuelin WANG, Banghao LI, Tiefeng WANG. Review of bubble breakup modelling and experimental study in turbulent flow[J]. CIESC Journal, 2021, 72(12): 5936-5954.
张华海, 王悦琳, 李邦昊, 王铁峰. 湍流中气泡破碎建模与实验研究进展[J]. 化工学报, 2021, 72(12): 5936-5954.
1 | Jia H, Lian P, Leng X, et al. Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery[J]. Fuel, 2019, 258: 116156. |
2 | Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967. |
3 | Wu Y N, Fang S S, Zhang K Y, et al. Stability mechanism of nitrogen foam in porous media with silica nanoparticles modified by cationic surfactants[J]. Langmuir, 2018, 34(27): 8015-8023. |
4 | Zhao M W, Wang R Y, Dai C L, et al. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length[J]. Chemical Engineering Science, 2019, 206: 203-211. |
5 | Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: role of surfactant type and concentration[J]. Advances in Colloid and Interface Science, 2020, 276: 102084. |
6 | Ramezani M, Legg M J, Haghighat A, et al. Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor[J]. Chemical Engineering Journal, 2017, 319: 288-296. |
7 | AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373. |
8 | Bera B, Carrier O, Backus E H G, et al. Counteracting interfacial energetics for wetting of hydrophobic surfaces in the presence of surfactants[J]. Langmuir, 2018, 34(41): 12344-12349. |
9 | Tanaka S, Kastens S, Fujioka S, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246. |
10 | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. |
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495. | |
11 | Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
12 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
13 | Wang T F, Wang J F. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2007, 62(24): 7107-7118. |
14 | Zhang H H, Guo K Y, Wang Y L, et al. Numerical simulations of the effect of liquid viscosity on gas-liquid mass transfer of a bubble column with a CFD-PBM coupled model[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120229. |
15 | Zhang H H, Sayyar A, Wang Y L, et al. Generality of the CFD-PBM coupled model for bubble column simulation[J]. Chemical Engineering Science, 2020, 219: 115514. |
16 | Shu S L, Vidal D, Bertrand F, et al. Multiscale multiphase phenomena in bubble column reactors: a review[J]. Renewable Energy, 2019, 141: 613-631. |
17 | Hulburt H M, Katz S. Some problems in particle technology: a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8): 555-574. |
18 | Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
19 | Ramkrishna D, Mahoney A W. Population balance modeling. Promise for the future[J]. Chemical Engineering Science, 2002, 57(4): 595-606. |
20 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
21 | Solsvik J, Tangen S, Jakobsen H A. On the constitutive equations for fluid particle breakage[J]. Reviews in Chemical Engineering, 2013, 29(5): 241-356. |
22 | Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297. |
23 | Chatzi E G, Gavrielides A D, Kiparissides C. Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels[J]. Industrial & Engineering Chemistry Research, 1989, 28(11): 1704-1711. |
24 | Narsimhan G, Gupta J P, Ramkrishna D. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions[J]. Chemical Engineering Science, 1979, 34(2): 257-265. |
25 | Alopaeus V, Koskinen J, Keskinen K I, et al. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank (Part 2): Parameter fitting and the use of the multiblock model for dense dispersions[J]. Chemical Engineering Science, 2002, 57(10): 1815-1825. |
26 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
27 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
28 | Tsouris C, Tavlarides L L. Breakage and coalescence models for drops in turbulent dispersions[J]. AIChE Journal, 1994, 40(3): 395-406. |
29 | Lee C H, Erickson L E, Glasgow L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions[J]. Chemical Engineering Communications, 1987, 59(1/2/3/4/5/6): 65-84. |
30 | Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns[J]. Chemical Engineering Science, 2001, 56(3): 1159-1166. |
31 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 2): Size PDF of the resulting daughter bubbles[J]. Journal of Fluid Mechanics, 1999, 401: 183-207. |
32 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 1): Breakup frequency[J]. Journal of Fluid Mechanics, 1999, 401: 157-182. |
33 | Razzaghi K, Shahraki F. Theoretical model for multiple breakup of fluid particles in turbulent flow field[J]. AIChE Journal, 2016, 62(12): 4508-4525. |
34 | Zhao H, Ge W. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure[J]. Chemical Engineering Science, 2007, 62(1/2): 109-115. |
35 | Andersson R, Andersson B. Modeling the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2031-2038. |
36 | Hagesaether L, Jakobsen H A, Svendsen H F. A model for turbulent binary breakup of dispersed fluid particles[J]. Chemical Engineering Science, 2002, 57(16): 3251-3267. |
37 | Han L C, Luo H A, Liu Y J. A theoretical model for droplet breakup in turbulent dispersions[J]. Chemical Engineering Science, 2011, 66(4): 766-776. |
38 | Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
39 | Han L C, Gong S G, Li Y Q, et al. A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows[J]. Chemical Engineering Science, 2013, 102: 186-199. |
40 | Das S K. A new turbulence-induced theoretical breakage kernel in the context of the population balance equation[J]. Chemical Engineering Science, 2016, 152: 140-150. |
41 | Zhang H H, Wang Y L, Sayyar A, et al. A CFD-PBM coupled model under entire turbulent spectrum for simulating a bubble column with highly viscous media[J]. AIChE Journal, 2021: e17473. |
42 | Zhang H H, Yang G Y, Sayyar A, et al. An improved bubble breakup model in turbulent flow[J]. Chemical Engineering Journal, 2020, 386: 121484. |
43 | Shi W B, Yang J, Li G, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405. |
44 | Luo H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim:The University of Trondheim, 1993. |
45 | Han L C, Gong S G, Ding Y W, et al. Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments[J]. AIChE Journal, 2015, 61(7): 2147-2168. |
46 | Andersson R, Andersson B. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030. |
47 | Ravelet F, Colin C, Risso F. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301. |
48 | Solsvik J, Jakobsen H A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5): 1795-1820. |
49 | Solsvik J, Skjervold V T, Han L C, et al. A theoretical study on drop breakup modeling in turbulent flows: the inertial subrange versus the entire spectrum of isotropic turbulence[J]. Chemical Engineering Science, 2016, 149: 249-265. |
50 | Karimi M, Andersson R. An exploratory study on fluid particles breakup rate models for the entire spectrum of turbulent energy[J]. Chemical Engineering Science, 2018, 192: 850-863. |
51 | Kocamustafaogullari G, Ishii M. Foundation of the interfacial area transport equation and its closure relations[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 481-493. |
52 | Renardy Y Y, Cristini V. Scalings for fragments produced from drop breakup in shear flow with inertia[J]. Physics of Fluids, 2001, 13(8): 2161-2164. |
53 | Renardy Y Y, Cristini V. Effect of inertia on drop breakup under shear[J]. Physics of Fluids, 2000, 13(1): 7-13. |
54 | Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow (Ⅰ):Mechanistic model [J]. Nuclear Engineering and Design, 2003, 219(2): 169-190. |
55 | Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow(Ⅱ):Model evaluation[J]. Nuclear Engineering and Design, 2003, 219(2): 169-190. |
56 | Letzel M H, Schouten J C, van den Bleek C M, et al. Effect of gas density on large-bubble holdup in bubble column reactors[J]. AIChE Journal, 1998, 44(10): 2333-2336. |
57 | Sun X D, Kim S, Ishii M, et al. Modeling of bubble coalescence and disintegration in confined upward two-phase flow[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 3-26. |
58 | Wang T F, Wang J F, Jin Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chemical Engineering Science, 2005, 60(22): 6199-6209. |
59 | Wang T F, Wang J F, Jin Y. Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7540-7549. |
60 | Wilkinson P M, van Schayk A, Spronken J P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
61 | Wilkinson P M, von Dierendonck L L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315. |
62 | Hesketh R P, Etchells A W, Russell T W F. Experimental observations of bubble breakage in turbulent flow[J]. Industrial & Engineering Chemistry Research, 1991, 30(5): 835-841. |
63 | Vankova N, Tcholakova S, Denkov N D, et al. Emulsification in turbulent flow (2): Breakage rate constants[J]. Journal of Colloid and Interface Science, 2007, 313(2): 612-629. |
64 | Tcholakova S, Vankova N, Denkov N D, et al. Emulsification in turbulent flow(3): Daughter drop-size distribution[J]. Journal of Colloid and Interface Science, 2007, 310(2): 570-589. |
65 | Vankova N, Tcholakova S, Denkov N D, et al. Emulsification in turbulent flow (1): Mean and maximum drop diameters in inertial and viscous regimes[J]. Journal of Colloid and Interface Science, 2007, 312(2): 363-380. |
66 | Vejražka J, Zedníková M, Stanovský P. Experiments on breakup of bubbles in a turbulent flow[J]. AIChE Journal, 2018, 64(2): 740-757. |
67 | Martı́nez-Bazán C, Montañés J L, Lasheras J C. Bubble size distribution resulting from the breakup of an air cavity injected into a turbulent water jet[J]. Physics of Fluids, 1999, 12(1): 145-148. |
68 | Eastwood C D, Armi L, Lasheras J C. The breakup of immiscible fluids in turbulent flows[J]. Journal of Fluid Mechanics, 2004, 502: 309-333. |
69 | Risso F, Fabre J. Oscillations and breakup of a bubble immersed in a turbulent field[J]. Journal of Fluid Mechanics, 1998, 372: 323-355. |
70 | Hasan B O. Experimental study on the bubble breakage in a stirred tank (2): Local dependence of breakage events[J]. Experimental Thermal and Fluid Science, 2018, 96: 48-62. |
71 | Hasan B O. Experimental study on the bubble breakage in a stirred tank(1): Mechanism and effect of operating parameters[J]. International Journal of Multiphase Flow, 2017, 97: 94-108. |
72 | Solsvik J, Jakobsen H A. Single air bubble breakup experiments in stirred water tank[J]. International Journal of Chemical Reactor Engineering, 2015, 13(4): 477-491. |
73 | Wichterle K, Wichterlová J, Kulhánková L. Breakup of bubbles rising in liquids of low and moderate viscosity[J]. Chemical Engineering Communications, 2005, 192(5): 550-556. |
74 | Zednikova M, Stanovsky P, Travnickova T, et al. Experiments on bubble breakup induced by collision with a vortex ring[J]. Chemical Engineering & Technology, 2019, 42(4): 843-850. |
75 | Shuai Y, Wang X Y, Huang Z L, et al. Experimental measurement of bubble breakup in a jet bubbling reactor[J]. AIChE Journal, 2021, 67(1): e17062. |
76 | Zhang H H, Wang Y L, Sayyar A, et al. Experimental study on breakup of a single bubble in a stirred tank: effect of gas density and liquid properties[J]. AIChE Journal, 2021: e17511. |
77 | Zaccone A, Gäbler A, Maaß S, et al. Drop breakage in liquid-liquid stirred dispersions: modelling of single drop breakage[J]. Chemical Engineering Science, 2007, 62(22): 6297-6307. |
[1] | Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099. |
[2] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[3] | Limin WANG, Shuyu GUO, Xing XIANG, Shaotong FU. Research progress of energy-minimization multi-scale method for turbulent system [J]. CIESC Journal, 2022, 73(6): 2415-2426. |
[4] | Ruqi YAN, Xuexing DING, Jie XU, Xianzhi HONG, Xin BAO. Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model [J]. CIESC Journal, 2021, 72(8): 4292-4303. |
[5] | Fan XIAO,Shengkun JIA,Yiqing LUO,Xigang YUAN. Structural optimization of methane cracking solar tube reactor based on CFD simulation [J]. CIESC Journal, 2021, 72(10): 5053-5063. |
[6] | Minggao YU,Zimao MA,Shixin HAN,Xueyan WANG,Chuandong CHEN. Study on influence of obstacle blockage rate gradient on methane explosion characteristics [J]. CIESC Journal, 2021, 72(10): 5430-5439. |
[7] | Yalin LIU, Ke WANG, Lei ZHAO. Numerical analysis on aerodynamically generated sound dipole source characteristics of shunt T-elbow [J]. CIESC Journal, 2020, 71(S1): 194-203. |
[8] | Jichao LI, Can JI, Mingming LYU, Jing WANG, Zhigang LIU, Huijun LI. Experimental study on characteristics of flow around single cylinder in microchannel based on Micro-PIV [J]. CIESC Journal, 2020, 71(4): 1597-1608. |
[9] | Jing ZHANG, Wei WANG, Shuning SONG, Bin GONG, Yaxia LI, Xueping WANG, Jianhua WU. Effect of inlet structures on discrete particles behavior based on concave-wall jet [J]. CIESC Journal, 2019, 70(8): 3021-3032. |
[10] | Zhengliang HUANG, Xiaoyun GUO, Yun SHUAI, Yao YANG, Jingyuan SUN, Binbo JIANG, Jingdai WANG, Yongrong YANG. Detection of gas-liquid dispersion in jet bubbling reactor [J]. CIESC Journal, 2019, 70(10): 3906-3913. |
[11] | WU Jiandong, LIU Qiao, WANG Hao. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles [J]. CIESC Journal, 2018, 69(S1): 15-19. |
[12] | ZHANG Jiabao, CUI Lijie, YANG Ning. Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor [J]. CIESC Journal, 2018, 69(1): 389-395. |
[13] | PENG Xin, WANG Yifei, WEI Zongyao, CHEN Futian, YU Guangsuo. Slender particle-containing multi-phase distribution characteristics in scrubbing-cooling chamber [J]. CIESC Journal, 2017, 68(9): 3368-3379. |
[14] | BAI Dehong, ZONG Yuan, ZHAO Ling. Computational fluid dynamics assisted design of cracking coils [J]. CIESC Journal, 2017, 68(2): 660-669. |
[15] | WEI Xiaoyang, WANG Limin, DENG Lei, CHE Defu. Influence of entrance effect of CC plate channel on thermal and hydraulic characteristic [J]. CIESC Journal, 2017, 68(11): 4061-4068. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||