CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2120-2129.DOI: 10.11949/0438-1157.20211802
• Energy and environmental engineering • Previous Articles Next Articles
Cong HE(),Wenqi ZHONG,Guanwen ZHOU,Xi CHEN()
Received:
2021-12-22
Revised:
2022-02-21
Online:
2022-05-24
Published:
2022-05-05
Contact:
Xi CHEN
通讯作者:
陈曦
作者简介:
何聪(1997—),男,硕士研究生,基金资助:
CLC Number:
Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude[J]. CIESC Journal, 2022, 73(5): 2120-2129.
何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129.
Add to citation manager EndNote|Ris|BibTeX
烧失量/%(质量) | CaO/% (质量) | SiO2/% (质量) | Al2O3/% (质量) | Fe2O3/% (质量) | MgO/% (质量) | K2O/% (质量) | Na2O/% (质量) | TiO2/% (质量) | ZnO/% (质量) | SO3/% (质量) |
---|---|---|---|---|---|---|---|---|---|---|
35.40 | 46.05 | 9.59 | 3.21 | 2.53 | 1.74 | 0.64 | 0.24 | 0.16 | 0.12 | 0.10 |
Table 1 Chemical composition analysis of cement raw meal
烧失量/%(质量) | CaO/% (质量) | SiO2/% (质量) | Al2O3/% (质量) | Fe2O3/% (质量) | MgO/% (质量) | K2O/% (质量) | Na2O/% (质量) | TiO2/% (质量) | ZnO/% (质量) | SO3/% (质量) |
---|---|---|---|---|---|---|---|---|---|---|
35.40 | 46.05 | 9.59 | 3.21 | 2.53 | 1.74 | 0.64 | 0.24 | 0.16 | 0.12 | 0.10 |
工业分析/%(质量) | 元素分析/%(质量) | Qgr,ad/ (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Oad | Nad | Sad | |
10.24 | 26.93 | 17.55 | 45.28 | 62.54 | 3.84 | 3.56 | 1.53 | 0.74 | 25492.32 |
Table 2 Proximate analysis, ultimate analysis and calorific value of coal sample
工业分析/%(质量) | 元素分析/%(质量) | Qgr,ad/ (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Oad | Nad | Sad | |
10.24 | 26.93 | 17.55 | 45.28 | 62.54 | 3.84 | 3.56 | 1.53 | 0.74 | 25492.32 |
工况 | 反应物料 | 反应压力p/MPa | 海拔高度h/m | 温度T/℃ | cO2/% | 物料量(煤)mc/g | 物料量(生料)mr/g |
---|---|---|---|---|---|---|---|
1 | 煤 | 0.06 | 4200 | 850 | 21 | 0.03 | 0 |
2 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 | |
3 | 0.10 | 0 | 850 | 21 | 0.03 | 0 | |
4 | 生料 | 0.06 | 4200 | 850 | 21 | 0 | 0.50 |
5 | 0.08 | 2000 | 850 | 21 | 0 | 0.50 | |
6 | 0.10 | 0 | 850 | 21 | 0 | 0.50 | |
7 | 混合物 | 0.06 | 4200 | 850 | 21 | 0.03 | 0.50 |
8 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 | |
9 | 0.10 | 0 | 850 | 21 | 0.03 | 0.50 | |
10 | 煤 | 0.08 | 2000 | 800 | 21 | 0.03 | 0 |
11 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 | |
12 | 0.08 | 2000 | 900 | 21 | 0.03 | 0 | |
13 | 生料 | 0.08 | 2000 | 800 | 21 | 0 | 0.50 |
14 | 0.08 | 2000 | 850 | 21 | 0 | 0.50 | |
15 | 0.08 | 2000 | 900 | 21 | 0 | 0.50 | |
16 | 混合物 | 0.08 | 2000 | 800 | 21 | 0.03 | 0.50 |
17 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 | |
18 | 0.08 | 2000 | 900 | 21 | 0.03 | 0.50 | |
19 | 煤 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 |
20 | 0.08 | 2000 | 850 | 30 | 0.03 | 0 | |
21 | 0.08 | 2000 | 850 | 40 | 0.03 | 0 | |
22 | 混合物 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 |
23 | 0.08 | 2000 | 850 | 30 | 0.03 | 0.50 | |
24 | 0.08 | 2000 | 850 | 40 | 0.03 | 0.50 |
Table 3 Experimental conditions
工况 | 反应物料 | 反应压力p/MPa | 海拔高度h/m | 温度T/℃ | cO2/% | 物料量(煤)mc/g | 物料量(生料)mr/g |
---|---|---|---|---|---|---|---|
1 | 煤 | 0.06 | 4200 | 850 | 21 | 0.03 | 0 |
2 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 | |
3 | 0.10 | 0 | 850 | 21 | 0.03 | 0 | |
4 | 生料 | 0.06 | 4200 | 850 | 21 | 0 | 0.50 |
5 | 0.08 | 2000 | 850 | 21 | 0 | 0.50 | |
6 | 0.10 | 0 | 850 | 21 | 0 | 0.50 | |
7 | 混合物 | 0.06 | 4200 | 850 | 21 | 0.03 | 0.50 |
8 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 | |
9 | 0.10 | 0 | 850 | 21 | 0.03 | 0.50 | |
10 | 煤 | 0.08 | 2000 | 800 | 21 | 0.03 | 0 |
11 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 | |
12 | 0.08 | 2000 | 900 | 21 | 0.03 | 0 | |
13 | 生料 | 0.08 | 2000 | 800 | 21 | 0 | 0.50 |
14 | 0.08 | 2000 | 850 | 21 | 0 | 0.50 | |
15 | 0.08 | 2000 | 900 | 21 | 0 | 0.50 | |
16 | 混合物 | 0.08 | 2000 | 800 | 21 | 0.03 | 0.50 |
17 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 | |
18 | 0.08 | 2000 | 900 | 21 | 0.03 | 0.50 | |
19 | 煤 | 0.08 | 2000 | 850 | 21 | 0.03 | 0 |
20 | 0.08 | 2000 | 850 | 30 | 0.03 | 0 | |
21 | 0.08 | 2000 | 850 | 40 | 0.03 | 0 | |
22 | 混合物 | 0.08 | 2000 | 850 | 21 | 0.03 | 0.50 |
23 | 0.08 | 2000 | 850 | 30 | 0.03 | 0.50 | |
24 | 0.08 | 2000 | 850 | 40 | 0.03 | 0.50 |
1 | 高洋. 丝绸之路经济带基础设施建设的投资方式探析[J]. 财会月刊, 2019 (1): 113-118. |
Gao Y. Analysis on investment mode of infrastructure construction in the Silk Road Economic Belt[J]. Finance and Accounting Monthly, 2019 (1): 113-118. | |
2 | 吴绍洪, 刘路路, 刘燕华, 等. “一带一路”陆域地理格局与环境变化风险[J]. 地理学报, 2018, 73(7): 1214-1225. |
Wu S H, Liu L L, Liu Y H, et al. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road[J]. Acta Geographica Sinica, 2018, 73(7): 1214-1225. | |
3 | 赵永生. 水泥工厂厂址选择案例分析[J]. 水泥工程, 2017, 30(6): 78-81. |
Zhao Y S. Analysis of site selection of cement factory[J]. Cement Engineering, 2017, 30(6): 78-81. | |
4 | 缪沾. 高原预分解低碱水泥生产线开发研究[D]. 武汉: 武汉理工大学, 2003. |
Miao Z. Research and studies of the production line of pre-decomposed low-alkali cement for pleateau[D]. Wuhan: Wuhan University of Technology, 2003. | |
5 | 王玉永, 郝小五, 谢隆山, 等. 高海拔地区预分解窑燃烧系统的优化改造[J]. 新世纪水泥导报, 2021, 27(5): 32-34. |
Wang Y Y, Hao X W, Xie L S, et al. Optimization and reformation of combustion system of precalciner kiln in high altitude area[J]. Cement Guide for New Epoch, 2021, 27(5): 32-34. | |
6 | 武晓萍, 徐俊杰. 高海拔地区水泥生产线技术诊断及优化[J]. 水泥技术, 2017, 1(1): 85-89. |
Wu X P, Xu J J. Technical diagnosis and optimization of cement production line in high altitude area[J]. Cement Technology, 2017, 1(1): 85-89. | |
7 | 刘晓义. 高海拔地区新型干法水泥生产及体会[J]. 中国水泥, 2006, 36(1): 66-69. |
Liu X Y. Experience of new-dry process cement production at high altitude[J]. China Cement, 2006, 36(1): 66-69. | |
8 | Tsiliyannis C A. Cement manufacturing using alternative fuels: enhanced productivity and environmental compliance via oxygen enrichment[J]. Energy, 2016, 113: 1202-1218. |
9 | Gao T M, Shen L, Shen M, et al. Analysis of material flow and consumption in cement production process[J]. Journal of Cleaner Production, 2016, 112: 553-565. |
10 | 朱祖培, 赵乃仁. 高海拔地区对新型干法水泥厂烧成系统影响的初步分析[J]. 水泥工程, 2001, 14(1): 4-9, 56. |
Zhu Z P, Zhao N R. Preliminary analysis on the influence of high-altitude district on the burning systems of the new type dry-process cement plants[J]. Cement Engineering, 2001, 14(1): 4-9, 56. | |
11 | 王青伟. 高海拔地区石灰窑煅烧及窑气净化技术[J]. 盐业与化工, 2014, 43(7): 44-48. |
Wang Q W. Limekiln calcinator and its gas purification technology of high altitude area[J]. Journal of Salt and Chemical Industry, 2014, 43(7): 44-48. | |
12 | L’vov B V. Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 31-40. |
13 | 王世杰, 陆继东, 胡芝娟, 等. 水泥生料分解动力学的研究[J]. 硅酸盐学报, 2003, 31(8): 811-814. |
Wang S J, Lu J D, Hu Z J, et al. Study on kinetics of decomposition of cement raw meal[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 811-814. | |
14 | Rao T R. Kinetics of calcium carbonate decomposition[J]. Chemical Engineering & Technology, 1996, 19(4): 373-377. |
15 | Galan I, Glasser F P, Andrade C. Calcium carbonate decomposition[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2): 1197-1202. |
16 | Ávila I, Crnkovic P M, Milioli F E, et al. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure[J]. Environmental Technology, 2012, 33(10): 1175-1182. |
17 | 李佳容. 石灰石分解特性及反应动力学研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019. |
Li J R. Study on decomposition characteristics and reaction kinetics of limestone[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2019. | |
18 | Khinast J, Krammer G F, Brunner C, et al. Decomposition of limestone: the influence of CO2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51(4): 623-634. |
19 | Ar İ, Doğu G. Calcination kinetics of high purity limestones[J]. Chemical Engineering Journal, 2001, 83(2): 131-137. |
20 | Anbalagan G, Rajakumar P R, Gunasekaran S. Non-isothermal decomposition of Indian limestone of marine origin[J]. Journal of Thermal Analysis and Calorimetry, 2009, 97(3): 917-921. |
21 | 张保生, 刘建忠, 周俊虎, 等. 粒度对石灰石分解动力学影响的热重实验研究[J]. 中国电机工程学报, 2010, 30(2): 50-55. |
Zhang B S, Liu J Z, Zhou J H, et al. Experimental study on the impaction of particle size to limestone decomposition kinetics by thermogravimetry[J]. Proceedings of the CSEE, 2010, 30(2): 50-55. | |
22 | Salvador A R, Calvo E G, Aparicio C B. Effects of sample weight, particle size, purge gas and crystalline structure on the observed kinetic parameters of calcium carbonate decomposition[J]. Thermochimica Acta, 1989, 143: 339-345. |
23 | 王俊杰, 颜碧兰, 汪澜, 等. 高温悬浮态下碳酸钙分解反应动力学的研究[J]. 武汉理工大学学报, 2013, 35(5): 41-44. |
Wang J J, Yan B L, Wang L, et al. Research on the decomposing kinetics of calcium carbonate under high temperature and suspension state[J]. Journal of Wuhan University of Technology, 2013, 35(5): 41-44. | |
24 | 陆继东, 王世杰, 刘瑞芝, 等. 水泥生料的分解模拟实验[J]. 硅酸盐学报, 2004, 32(10): 1214-1218. |
Lu J D, Wang S J, Liu R Z, et al. Simulated experiment on decomposition of cement raw meal[J]. Journal of the Chinese Ceramic Society, 2004, 32(10): 1214-1218. | |
25 | 赵俊. 水泥分解炉中煤焦悬浮态燃烧的动力学特性研究[D]. 苏州: 苏州大学, 2010. |
Zhao J. Study on kinetics characters of coal coke suspension combustion in cement precalciner[D]. Suzhou: Soochow University, 2010. | |
26 | Fernandez J R, Turrado S, Abanades J C. Calcination kinetics of cement raw meals under various CO2 concentrations[J]. Reaction Chemistry & Engineering, 2019, 4(12): 2129-2140. |
27 | 高柯. 高原低压缺氧环境下湿基生物质气化试验与模拟研究[D]. 天津: 天津大学, 2018. |
Gao K. Experimental study and simulation of wet biomass gasification under anoxic environment in highland condition[D]. Tianjin: Tianjin University, 2018. | |
28 | 夏家华,史慧玲,郑金宝. 水泥生料流化特性试验研究[J]. 武汉工业大学学报, 1996, 18(3): 91-94. |
Xia J H, Shi H L, Zheng J B. Experimental study of fluid character for cement raw meal[J]. Journal of Wuhan University of Technology, 1996, 18(3): 91-94. | |
29 | 肖香, 方平, 黄建航, 等. CO2含量对污泥再燃还原NO的影响研究[J]. 燃料化学学报, 2019, 47(2): 233-241. |
Xiao X, Fang P, Huang J H, et al. Effect of CO2 content on NO reduction during sewage sludge reburning[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 233-241. | |
30 | 王世杰. 水泥预分解窑系统内生料分解、煤粉燃烧与NO x 控制研究[D]. 武汉: 华中科技大学, 2006. |
Wang S J. Study of raw meal decomposition, pulverized coal combustion and NO x control for cement precalciner system[D]. Wuhan: Huazhong University of Science and Technology, 2006. | |
31 | 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001. |
Hu R Z, Shi Q Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001. | |
32 | 李安平, 张薇, 简淼夫, 等. 水泥生料在模拟分解炉内分解特性的研究[J]. 硅酸盐学报, 1995, 23(2): 175-183. |
Li A P, Zhang W, Jian M F, et al. Studies on decomposition properties of cement raw meal in simulated precalciner[J]. Journal of the Chinese Ceramic Society, 1995, 23(2): 175-183. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[3] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[4] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[5] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[6] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[7] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[8] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[9] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[10] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[11] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[12] | Xue LI, Ming DONG, Huang ZHANG, Jun XIE. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions [J]. CIESC Journal, 2022, 73(5): 1940-1946. |
[13] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[14] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[15] | Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres [J]. CIESC Journal, 2022, 73(2): 876-886. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||