CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2514-2528.DOI: 10.11949/0438-1157.20220157
• Reviews and monographs • Previous Articles Next Articles
Received:
2022-01-27
Revised:
2022-04-20
Online:
2022-06-30
Published:
2022-06-05
Contact:
Xinhua LIU
通讯作者:
刘新华
作者简介:
胡善伟(1988—),男,博士,副研究员,基金资助:
CLC Number:
Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems[J]. CIESC Journal, 2022, 73(6): 2514-2528.
胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
Add to citation manager EndNote|Ris|BibTeX
72 | Hu S W, Liu X H. Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 579-590. |
73 | Liu X H, Zhao M, Hu S W, et al. Three-dimensional CFD simulation of tapered gas-solid risers by coupling the improved EMMS drag[J]. Powder Technology, 2019, 352: 305-313. |
74 | Niu L, Huang Y H, Chu Z M, et al. Identification of mesoscale flow in a bubbling and turbulent gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471. |
75 | Zhang C X, Li P L, Lei C, et al. Experimental study of non-uniform bubble growth in deep fluidized beds[J]. Chemical Engineering Science, 2018, 176: 515-523. |
1 | Li J H, Kwauk M. Particle-Fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
2 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
76 | 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9. |
Chen W, Ren Y. Similarity between fluidization and phase transition[J]. CIESC Journal, 2019, 70(1): 1-9. | |
77 | 马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479. |
Ma W Y, Luo Z H. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed[J]. CIESC Journal, 2019, 70(7): 2472-2479. | |
78 | 王荘, 吕潇, 邵媛媛, 祝京旭. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927. |
3 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
4 | Su M Z, Zhao H B. Modifying the inter-phase drag via solid volume fraction gradient for CFD simulation of fast fluidized beds[J]. AIChE Journal, 2017, 63(7): 2588-2598. |
5 | Zhang D Z, VanderHeyden W B. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows[J]. International Journal of Multiphase Flow, 2002, 28(5): 805-822. |
78 | Wang Z, Lyu X, Shao Y Y, et al. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927. |
79 | Kwauk M. Generalized fluidization(Ⅰ): Steady-state motion[J]. Science in China, Ser.A, 1963, 6(4): 587-612. |
6 | Ye M, Wang J W, van der Hoef M A, et al. Two-fluid modeling of Geldart A particles in gas-fluidized beds[J]. Particuology, 2008, 6(6): 540-548. |
7 | Zimmermann S, Taghipour F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
8 | Gao J S, Lan X Y, Fan Y P, et al. CFD modeling and validation of the turbulent fluidized bed of FCC particles[J]. AIChE Journal, 2009, 55(7): 1680-1694. |
9 | Igci Y, Andrews A T I, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
10 | Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds[J]. AIChE Journal, 2014, 60(3): 839-854. |
11 | Ozel A, Fede P, Simonin O. Development of filtered Euler-Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
12 | Radl S, Sundaresan S. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions[J]. Chemical Engineering Science, 2014, 117: 416-425. |
13 | Schneiderbauer S, Puttinger S, Pirker S. Comparative analysis of subgrid drag modifications for dense gas-particle flows in bubbling fluidized beds[J]. AIChE Journal, 2013, 59(11): 4077-4099. |
14 | Schneiderbauer S. A spatially-averaged two-fluid model for dense large-scale gas-solid flows[J]. AIChE Journal, 2017, 63(8): 3544-3562. |
15 | Milioli C C, Milioli F E, Holloway W, et al. Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations[J]. AIChE Journal, 2013, 59(9): 3265-3275. |
16 | Gao X, Li T W, Sarkar A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51. |
17 | Chen X, Song N, Jiang M, et al. Theoretical and numerical analysis of key sub-grid quantities' effect on filtered Eulerian drag force[J]. Powder Technology, 2020, 372: 15-31. |
18 | Zhu L T, Liu Y X, Tang J X, et al. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers[J]. Chemical Engineering Science, 2019, 204: 228-245. |
19 | Cloete J H, Cloete S, Municchi F, et al. Development and verification of anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2018, 192: 930-954. |
20 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
21 | Zhu L T, Bo O Y, Lei H, et al. Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows[J]. AIChE Journal, 2021, 67(8): e17299. |
22 | Capecelatro J, Desjardins O, Fox R O. Strongly coupled fluid-particle flows in vertical channels(Ⅰ): Reynolds-averaged two-phase turbulence statistics[J]. Physics of Fluids, 2016, 28(3): 033306. |
23 | Schneiderbauer S, Saeedipour M. Approximate deconvolution model for the simulation of turbulent gas-solid flows: an a priori analysis[J]. Physics of Fluids, 2018, 30(2): 023301. |
24 | Wang J W, van der Hoef M A, Kuipers J A M. Coarse grid simulation of bed expansion characteristics of industrial-scale gas-solid bubbling fluidized beds[J]. Chemical Engineering Science, 2010, 65(6): 2125-2131. |
25 | 肖海涛, 祁海鹰, 由长福, 等. 循环流化床气固曳力模型[J]. 计算物理, 2003, 20(1): 25-30. |
Xiao H T, Qi H Y, You C F, et al. Theoretical model of drag between gas and solid phase in circulating fluidized bed[J]. Chinese Journal of Computation Physics, 2003, 20(1): 25-30. | |
26 | Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
27 | Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004. |
28 | Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach— extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
29 | Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571. |
30 | Hu S W, Liu X H, Zhang N, et al. Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method[J]. Chemical Engineering Journal, 2017, 307: 326-338. |
31 | Tian Y J, Lu B N, Li F, et al. A steady-state EMMS drag model for fluidized beds[J]. Chemical Engineering Science, 2020, 219: 115616. |
32 | Lungu M, Zhou Y F, Wang J D, et al. A CFD study of a bi-disperse gas-solid fluidized bed: effect of the EMMS sub grid drag correction[J]. Powder Technology, 2015, 280: 154-172. |
33 | Wang S, Lu H L, Liu G D, et al. Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds[J]. Powder Technology, 2011, 208(1): 98-110. |
34 | Jiang X X, Li D, Wang S Y, et al. Comparative analysis of heterogeneous gas-solid flow using dynamic cluster structure-dependent drag model in risers[J]. International Journal of Multiphase Flow, 2020, 122: 103126. |
35 | Lu B N, Wang W, Li J H. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
36 | Du S H, Liu L J. A local cluster-structure-dependent drag model for Eulerian simulation of gas-solid flow in CFB risers[J]. Chemical Engineering Journal, 2019, 368: 687-699. |
37 | Nikolopoulos A, Nikolopoulos N, Charitos A, et al. High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chemical Engineering Science, 2013, 90: 137-150. |
38 | Lu B N, Zhang N, Wang W, et al. Extending EMMS-based models to CFB boiler applications[J]. Particuology, 2012, 10(6): 663-671. |
39 | Chen C, Dai Q T, Qi H Y. Improvement of EMMS drag model for heterogeneous gas-solid flows based on cluster modeling[J]. Chemical Engineering Science, 2016, 141: 8-16. |
40 | Shah M T, Utikar R P, Tade M O, et al. Simulation of gas-solid flows in riser using energy minimization multiscale model: effect of cluster diameter correlation[J]. Chemical Engineering Science, 2011, 66(14): 3291-3300. |
41 | Nikolopoulos A, Papafotiou D, Nikolopoulos N, et al. An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow ( Ⅰ ) : Numerical formulation[J]. Chemical Engineering Science, 2010, 65(13): 4080-4088. |
42 | Dai Q T, Chen C, Qi H Y. Influence of meso-scale structures on drag in gas-solid fluidized beds[J]. Powder Technology, 2016, 288: 87-95. |
43 | Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
44 | Hong K, Shi Z S, Ullah A, et al. Extending the bubble-based EMMS model to CFB riser simulations[J]. Powder Technology, 2014, 266: 424-432. |
45 | Liu X H, Jiang Y F, Liu C F, et al. Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2800-2810. |
46 | Lv X L, Li H Z, Zhu Q S. Simulation of gas-solid flow in 2D/3D bubbling fluidized beds by combining the two-fluid model with structure-based drag model[J]. Chemical Engineering Journal, 2014, 236: 149-157. |
47 | Li J G, Tian X Y, Yang B L. Hydromechanical simulation of a bubbling fluidized bed using an extended bubble-based EMMS model[J]. Powder Technology, 2017, 313: 369-381. |
48 | Cheng J N, Fan X Q, Sun J Y, et al. Evolution and fluidization behaviors of wet agglomerates based on formation-fragmentation competition mechanism[J]. Chemical Engineering Science, 2022, 247: 116933. |
49 | Wang S, Lu H L, Zhang Q H, et al. Modeling of bubble-structure-dependent drag for bubbling fluidized beds[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15776-15785. |
50 | Ullah A, Hong K, Chilton S, et al. Bubble-based EMMS mixture model applied to turbulent fluidization[J]. Powder Technology, 2015, 281: 129-137. |
51 | Hu S W, Liu X H. A general EMMS drag model applicable for gas-solid turbulent beds and cocurrent downers[J]. Chemical Engineering Science, 2019, 205: 14-24. |
52 | Zou Z, Liu W M, Yan D, et al. CFD simulations of tapered bubbling/turbulent fluidized beds with/without gas distributor based on the structure-based drag model[J]. Chemical Engineering Science, 2019, 202: 157-168. |
53 | Ullah A, Wang W, Li J H. Evaluation of drag models for cocurrent and countercurrent gas-solid flows[J]. Chemical Engineering Science, 2013, 92: 89-104. |
54 | Hu S W, Liu X H. A simple and general sub-grid drag model for gas-solid fast fluidization[J]. Chemical Engineering Journal, 2021, 421: 129922. |
55 | Zhu L T, Tang J X, Luo Z H. Machine learning to assist filtered two-fluid model development for dense gas-particle flows[J]. AIChE Journal, 2020, 66(6): e16973. |
56 | Nikolopoulos A, Samlis C, Zeneli M, et al. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles[J]. Chemical Engineering Science, 2021, 229: 116013. |
57 | Jiang Y D, Kolehmainen J, Gu Y L, et al. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology, 2019, 346: 403-413. |
58 | Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003. |
59 | Yan W C, Luo Z H, Lu Y H, et al. A CFD-PBM-PMLM integrated model for the gas-solid flow fields in fluidized bed polymerization reactors[J]. AIChE Journal, 2012, 58(6): 1717-1732. |
60 | Chen X Z, Wang J W, Li J H. Coarse grid simulation of heterogeneous gas-solid flow in a CFB riser with polydisperse particles[J]. Chemical Engineering Journal, 2013, 234: 173-183. |
61 | Wang T, Xia Z H, Chen C X. Coupled CFD-PBM simulation of bubble size distribution in a 2D gas-solid bubbling fluidized bed with a bubble coalescence and breakup model[J]. Chemical Engineering Science, 2019, 202: 208-221. |
62 | Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122. |
63 | Hu S W, Liu X H. CFD-PBM simulation of gas-solid bubbling flow with structure-dependent drag coefficients[J]. Chemical Engineering Journal, 2021, 413: 127503. |
64 | Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS Paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
65 | Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. |
66 | Ma Y L, Liu M Y, Zhang Y. An improved meso-scale flow model of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2018, 179: 243-256. |
67 | Hu S W, Liu X H, Li J H. Steady-state modeling of axial heterogeneity in CFB risers based on one-dimensional EMMS model[J]. Chemical Engineering Science, 2013, 96: 165-173. |
68 | Zhang Z X, Hu S W, Liu X H, et al. Modeling the hydrodynamics of cocurrent gas-solid downers according to energy-minimization multi-scale theory[J]. Particuology, 2016, 29: 110-119. |
69 | Liu J B, Liu X H, Ge W. EMMS-based modeling of gas-solid generalized fluidization: towards a unified phase diagram[J]. Chinese Journal of Chemical Engineering, 2021, 29: 27-34. |
70 | Liu X H, Hu S W, Jiang Y F, et al. Extension and application of energy-minimization multi-scale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors[J]. Chemical Engineering Journal, 2015, 278: 492-503. |
71 | Tu Q Y, Wang H G, Ocone R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors — a review[J]. Powder Technology, 2022, 399: 117181. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[7] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[10] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[11] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[12] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[13] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[14] | Sheng CHEN, Mengke WANG, Bona LU, Xiufeng LI, Cenfan LIU, Mengxi LIU, Yiping FAN, Chunxi LU. CFD investigation of effects of feedstock oil vaporization on FCC cracking reaction and coking [J]. CIESC Journal, 2022, 73(7): 2982-2995. |
[15] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||