CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5517-5525.DOI: 10.11949/0438-1157.20221169
• Surface and interface engineering • Previous Articles Next Articles
Wenhao CAI1(), Xiongwen XU1,2(
)
Received:
2022-08-23
Revised:
2022-11-07
Online:
2023-01-17
Published:
2022-12-05
Contact:
Xiongwen XU
通讯作者:
许雄文
作者简介:
蔡文豪(1998—),男,硕士研究生,1808755506@qq.com
基金资助:
CLC Number:
Wenhao CAI, Xiongwen XU. Influence of wall charge on ice adhesion on copper surface[J]. CIESC Journal, 2022, 73(12): 5517-5525.
蔡文豪, 许雄文. 壁面电荷对铜表面冰黏附的影响研究[J]. 化工学报, 2022, 73(12): 5517-5525.
MO/(g/mol) | MH/(g/mol) | qO/e | qH/e | lOM/Å | r0/Å | θ0/(°) |
---|---|---|---|---|---|---|
15.9994 | 1.008 | -1.1794 | 0.5897 | 0.1577 | 0.9572 | 104.5 |
Table 1 Model parameters of water molecule(TIP4P/ICE)
MO/(g/mol) | MH/(g/mol) | qO/e | qH/e | lOM/Å | r0/Å | θ0/(°) |
---|---|---|---|---|---|---|
15.9994 | 1.008 | -1.1794 | 0.5897 | 0.1577 | 0.9572 | 104.5 |
组分 | ε/(kcal/mol) | σ/Å |
---|---|---|
O-O | 0.2108 | 3.1668 |
Cu-O | 0.1853 | 2.7523 |
Cu-H, O-H, H-H | 0 | 0 |
Table 2 Interaction parameters between components
组分 | ε/(kcal/mol) | σ/Å |
---|---|---|
O-O | 0.2108 | 3.1668 |
Cu-O | 0.1853 | 2.7523 |
Cu-H, O-H, H-H | 0 | 0 |
Fig.6 Time-dependent changes in the number of ice-like water molecules and model snapshots at corresponding moments (brass are copper atoms, red are “liquid” water molecules, blue are “solid” water molecules, and white are hydrogen atoms)
Fig.7 The position change of the ice mass center in the stripping simulation under different applied normal stress when T=255 K, Qperiod=±0.1123 e/nm2,t=33.5 ns
Fig.10 The static structure of the ice cube when the system is in equilibrium (the dotted line is the threshold for distinguishing ice and water; above the dotted line is ice, and below the dotted line is water)
1 | Kauffeld M, Gund S. Ice slurry—history, current technologies and future developments[J]. International Journal of Refrigeration, 2019, 99: 264-271. |
2 | Bédécarrats J P, David T, Castaing-Lasvignottes J. Ice slurry production using supercooling phenomenon[J]. International Journal of Refrigeration, 2010, 33(1): 196-204. |
3 | Chen M B, Fu D K, Song W J, et al. Performance of ice generation system using supercooled water with a directed evaporating method[J]. Energies, 2021, 14(21): 7021. |
4 | 蔡玲玲, 米沙, 刘志强. 过冷器表面冰层分离模型研究[J]. 工程热物理学报, 2019, 40(5): 1160-1168. |
Cai L L, Mi S, Liu Z Q. Investigation on modelling the ice separation on supercooling surface[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1160-1168. | |
5 | Golovin K, Kobaku S P R, Lee D H, et al. Designing durable icephobic surfaces[J]. Science Advances, 2016, 2(3): e1501496. |
6 | Janjua Z A, Turnbull B, Choy K L, et al. Performance and durability tests of smart icephobic coatings to reduce ice adhesion[J]. Applied Surface Science, 2017, 407: 555-564. |
7 | Xia A N, He L, Qie S H, et al. Fabrication of an anti-icing aluminum alloy surface by combining wet etching and laser machining[J]. Applied Sciences, 2022, 12(4): 2119. |
8 | Carriveau R, Edrisy A, Cadieux P, et al. Ice adhesion issues in renewable energy infrastructure[J]. Journal of Adhesion Science and Technology, 2012, 26(4/5): 447-461. |
9 | Song M J, Deng S M, Dang C B, et al. Review on improvement for air source heat pump units during frosting and defrosting[J]. Applied Energy, 2018, 211: 1150-1170. |
10 | Caliskan F, Hajiyev C. A review of in-flight detection and identification of aircraft icing and reconfigurable control[J]. Progress in Aerospace Sciences, 2013, 60: 12-34. |
11 | Bernal J D, Fowler R H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions[J]. The Journal of Chemical Physics, 1933, 1(8): 515-548. |
12 | Slater B, Michaelides A. Surface premelting of water ice[J]. Nature Reviews Chemistry, 2019, 3(3): 172-188. |
13 | Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
14 | Liu Q, Yang Y, Huang M, et al. Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating[J]. Applied Surface Science, 2015, 346: 68-76. |
15 | Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577. |
16 | Wang Y L, Yao X, Chen J, et al. Organogel as durable anti-icing coatings[J]. Science China Materials, 2015, 58(7): 559-565. |
17 | Zhu L, Xue J, Wang Y Y, et al. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4053-4062. |
18 | Chen J, Luo Z Q, Fan Q R, et al. Anti-ice coating inspired by ice skating[J]. Small, 2014, 10(22): 4693-4699. |
19 | Chen J, Dou R M, Cui D P, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4026-4030. |
20 | Heydari G, Tyrode E, Visnevskij C, et al. Temperature-dependent deicing properties of electrostatically anchored branched brush layers of poly(ethylene oxide)[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(17): 4194-4202. |
21 | Chernyy S, Järn M, Shimizu K, et al. Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties: effect of counter ions[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6487-6496. |
22 | Chen D Y, Gelenter M D, Hong M, et al. Icephobic surfaces induced by interfacial nonfrozen water[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 4202-4214. |
23 | Dou R M, Chen J, Zhang Y F, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 6998-7003. |
24 | Zhang X X, Lv Y J, Chen M. Crystallisation of ice in charged Pt nanochannel[J]. Molecular Physics, 2013, 111(24): 3808-3814. |
25 | Zhu X Y, Yuan Q Z, Zhao Y P. Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing[J]. Nanoscale, 2014, 6(10): 5432-5437. |
26 | Conde M M, Vega C, Patrykiejew A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation[J]. The Journal of Chemical Physics, 2008, 129(1): 014702. |
27 | Xiao S B, He J Y, Zhang Z L. Nanoscale deicing by molecular dynamics simulation[J]. Nanoscale, 2016, 8(30): 14625-14632. |
28 | Afshar A, Meng D. Adhesive shear strength of ice from nanostructured graphite surfaces by molecular dynamics simulations[EB/OL]. 2020.. |
29 | Meng D, Afshar A, Bassou R, et al. Molecular dynamics simulations of nano-scale icing phenomena (invited)[C]//AIAA Aviation 2020 Forum. Reston, Virginia: AIAA, 2020. |
30 | Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. |
31 | Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. |
32 | Abascal J L F, Sanz E, García Fernández R, et al. A potential model for the study of ices and amorphous water: TIP4P/Ice[J]. The Journal of Chemical Physics, 2005, 122(23): 234511. |
33 | Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. Journal of Computational Physics, 1977, 23(3): 327-341. |
34 | Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes[J]. The Journal of Physical Chemistry B, 2003, 107(6): 1345-1352. |
35 | Yu Y H, Xu X W, Liu J P, et al. The study of water wettability on solid surfaces by molecular dynamics simulation[J]. Surface Science, 2021, 714: 121916. |
36 | 朱丹丹, 许雄文, 刘金平, 等. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
Zhu D D, Xu X W, Liu J P, et al. Characteristic of condensation heat transfer of hybrid wettable patterned copper surfaces[J]. CIESC Journal, 2021, 72(5): 2528-2546. | |
37 | Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture[J]. Molecular Physics, 2008, 106(20): 2367-2370. |
38 | 苗瑞灿, 郭纪伟, 杨历, 等. 纳米尺度下流体剪切流动的分子动力学模拟[J]. 工程热物理学报, 2020, 41(6): 1477-1484. |
Miao R C, Guo J W, Yang L, et al. Molecular dynamics simulation of shear flow of nanofluids in microchannels[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1477-1484. | |
39 | Metya A, Singh J K. Nucleation of aqueous salt solutions on solid surfaces[J]. The Journal of Physical Chemistry C, 2018, 122(15): 8277-8287. |
40 | Yang P L, Wang Z X, Liang Z, et al. A constant potential molecular dynamics simulation study of the atomic-scale structure of water surfaces near electrodes[J]. Chinese Journal of Chemistry, 2019, 37(12): 1251-1258. |
41 | Wang Z X, Olmsted D L, Asta M, et al. Electric potential calculation in molecular simulation of electric double layer capacitors[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2016, 28(46): 464006. |
42 | Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses[J]. Physical Review B, 1983, 28(2): 784-805. |
43 | Lechner W, Dellago C. Accurate determination of crystal structures based on averaged local bond order parameters[J]. The Journal of Chemical Physics, 2008, 129(11): 114707. |
44 | Sanz E, Vega C, Espinosa J R, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40): 15008-15017. |
45 | 王瑞. 冰水两相界面结构变化规律的分子动力学模拟[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021. |
Wang R. MD simulations on the interfacial structure changes between ice and water[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2021. | |
46 | Bao L Y, Huang Z Y, Priezjev N V, et al. A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: a molecular dynamics simulation study[J]. Applied Surface Science, 2018, 437: 202-208. |
47 | Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice[J]. Nature, 2011, 479(7374): 506-508. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[7] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[8] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[9] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[10] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[11] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[12] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[13] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
[14] | Jinyuan ZHANG, Na XU, Wenyun HE, Yaodong LYU, Zilu LIU, Xingfang ZHANG. Analysis on applicability of PEO/OTAC/NaSal mixture as the drag-reduction additives for firefighting system by mesoscopic molecular dynamics simulation [J]. CIESC Journal, 2022, 73(3): 1157-1165. |
[15] | Rui WANG, Ying REN, Wei CHEN, Yongsheng HAN. Molecular dynamics simulation on the dynamic structure of icing interface [J]. CIESC Journal, 2022, 73(3): 1315-1323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||