CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 861-870.DOI: 10.11949/0438-1157.20221270
• Energy and environmental engineering • Previous Articles Next Articles
Shaozhuang WANG1(), Dunxi YU1(), Jiayi LI2, Jingkun HAN1, Xin YU1, Fangqi LIU1
Received:
2022-09-22
Revised:
2022-11-23
Online:
2023-03-21
Published:
2023-02-05
Contact:
Dunxi YU
王绍壮1(), 于敦喜1(), 李佳忆2, 韩京昆1, 喻鑫1, 刘芳琪1
通讯作者:
于敦喜
作者简介:
王绍壮(1999—),男,硕士研究生,775587304@qq.com
基金资助:
CLC Number:
Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk[J]. CIESC Journal, 2023, 74(2): 861-870.
王绍壮, 于敦喜, 李佳忆, 韩京昆, 喻鑫, 刘芳琪. 烟气烘焙对玉米秆可磨性的影响规律研究[J]. 化工学报, 2023, 74(2): 861-870.
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,ad) | HHV/ (MJ·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | O① | ||
SY煤 | 9.17 | 28.60 | 11.73 | 50.49 | 62.73 | 4.02 | 1.33 | 0.23 | 10.79 | 23.58 |
CS | 12.06 | 62.71 | 7.52 | 17.71 | 42.33 | 5.35 | 2.02 | 0.20 | 30.53 | 14.37 |
N2-240 | 3.00 | 60.02 | 17.85 | 19.13 | 43.92 | 5.04 | 1.99 | 0.10 | 28.11 | 15.94 |
N2-270 | 2.92 | 55.61 | 19.77 | 21.71 | 45.84 | 4.68 | 2.01 | 0.09 | 24.70 | 16.97 |
N2-300 | 2.87 | 37.32 | 24.18 | 35.16 | 54.57 | 4.08 | 2.32 | 0.10 | 11.87 | 19.86 |
DFG-240 | 2.94 | 53.51 | 18.13 | 25.42 | 48.15 | 4.69 | 2.01 | 0.09 | 23.99 | 18.86 |
DFG-270 | 2.87 | 35.83 | 22.32 | 38.77 | 53.35 | 3.82 | 2.35 | 0.11 | 15.18 | 19.20 |
DFG-300 | 2.80 | 30.02 | 25.24 | 41.94 | 55.23 | 3.45 | 2.51 | 0.12 | 10.65 | 19.70 |
WFG-240 | 2.71 | 52.12 | 19.72 | 22.31 | 48.55 | 4.48 | 1.48 | 0.05 | 23.02 | 18.91 |
WFG-270 | 2.19 | 34.31 | 24.53 | 38.96 | 54.42 | 3.84 | 1.81 | 0.07 | 13.14 | 20.52 |
WFG-300 | 2.10 | 27.39 | 28.02 | 42.49 | 56.25 | 3.62 | 1.87 | 0.09 | 8.06 | 20.86 |
Table 1 Proximate analysis, ultimate analysis and calorific value of samples
样品 | 工业分析/%(质量,ad) | 元素分析/%(质量,ad) | HHV/ (MJ·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | O① | ||
SY煤 | 9.17 | 28.60 | 11.73 | 50.49 | 62.73 | 4.02 | 1.33 | 0.23 | 10.79 | 23.58 |
CS | 12.06 | 62.71 | 7.52 | 17.71 | 42.33 | 5.35 | 2.02 | 0.20 | 30.53 | 14.37 |
N2-240 | 3.00 | 60.02 | 17.85 | 19.13 | 43.92 | 5.04 | 1.99 | 0.10 | 28.11 | 15.94 |
N2-270 | 2.92 | 55.61 | 19.77 | 21.71 | 45.84 | 4.68 | 2.01 | 0.09 | 24.70 | 16.97 |
N2-300 | 2.87 | 37.32 | 24.18 | 35.16 | 54.57 | 4.08 | 2.32 | 0.10 | 11.87 | 19.86 |
DFG-240 | 2.94 | 53.51 | 18.13 | 25.42 | 48.15 | 4.69 | 2.01 | 0.09 | 23.99 | 18.86 |
DFG-270 | 2.87 | 35.83 | 22.32 | 38.77 | 53.35 | 3.82 | 2.35 | 0.11 | 15.18 | 19.20 |
DFG-300 | 2.80 | 30.02 | 25.24 | 41.94 | 55.23 | 3.45 | 2.51 | 0.12 | 10.65 | 19.70 |
WFG-240 | 2.71 | 52.12 | 19.72 | 22.31 | 48.55 | 4.48 | 1.48 | 0.05 | 23.02 | 18.91 |
WFG-270 | 2.19 | 34.31 | 24.53 | 38.96 | 54.42 | 3.84 | 1.81 | 0.07 | 13.14 | 20.52 |
WFG-300 | 2.10 | 27.39 | 28.02 | 42.49 | 56.25 | 3.62 | 1.87 | 0.09 | 8.06 | 20.86 |
Fig.3 Particle size distribution of separate grinding coal, raw and torrefied corn stalk[(a), (b), (c) and (d), (e), (f) reaction condition was different torrefied atmosphere and temperature]
Fig.4 Particle size distribution of mixed grinding coal, raw and torrefied corn stalk[(a), (b), (c) and (d), (e), (f) reaction condition was different torrefied atmosphere and temperature]
Fig.5 Particle size distribution of mixed grinding coal, raw and torrefied corn stalk in different mixing ratio[(a), (b), (c)(d), (e)(f) reaction condition was different mixing ratio]
1 | Bach Q V, Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
2 | 郑丁乾, 田善君, 马思宁, 等. 基于空间分析方法的我国燃煤耦合生物质发电潜力分析[J]. 洁净煤技术, 2022, 28(6): 35-43. |
Zheng D Q, Tian S J, Ma S N, et al. Potential analysis of coal-biomass co-firing power generation in China based on a spatial analysis method[J]. Clean Coal Technology, 2022, 28(6): 35-43. | |
3 | Rokni E, Panahi A, Ren X H, et al. Curtailing the generation of sulfur dioxide and nitrogen oxide emissions by blending and oxy-combustion of coals[J]. Fuel, 2016, 181: 772-784. |
4 | Manzano-Agugliaro F, Alcayde A, Montoya F G, et al. Scientific production of renewable energies worldwide: an overview[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 134-143. |
5 | 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126. |
Xin B A, Shan B G, Li Q H, et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126. | |
6 | Chen W H, Peng J H, Bi X T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 847-866. |
7 | Cahyanti M N, Doddapaneni T R K, Kikas T. Biomass torrefaction: an overview on process parameters, economic and environmental aspects and recent advancements[J]. Bioresource Technology, 2020, 301: 122737. |
8 | Chen W H, Kuo P C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry[J]. Energy, 2010, 35(6): 2580-2586. |
9 | Bach Q V, Chen W H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review[J]. Bioresource Technology, 2017, 246: 88-100. |
10 | He C, Tang C Y, Li C H, et al. Wet torrefaction of biomass for high quality solid fuel production: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 259-271. |
11 | Deng J, Wang G J, Kuang J H, et al. Pretreatment of agricultural residues for co-gasification via torrefaction[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 331-337. |
12 | Shankar Tumuluru J, Sokhansanj S, Hess J R, et al. A review on biomass torrefaction process and product properties for energy applications[J]. Industrial Biotechnology, 2011, 7(5): 384-401. |
13 | Wang C W, Peng J H, Li H, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets[J]. Bioresource Technology, 2013, 127: 318-325. |
14 | Mei Y Y, Liu R J, Yang Q, et al. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas[J]. Bioresource Technology, 2015, 177: 355-360. |
15 | Onsree T, Tippayawong N, Williams T, et al. Torrefaction of pelletized corn residues with wet flue gas[J]. Bioresource Technology, 2019, 285: 121330. |
16 | Su Y H, Zhang S P, Liu L Q, et al. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors[J]. Bioresource Technology, 2018, 267: 584-590. |
17 | 杜一帆. 非惰性气氛烘焙稻壳与煤的混燃特性研究[D]. 武汉: 华中科技大学, 2017. |
Du Y F. Investigation of co-combustion characteristics of non-inert torrefied rice husk and coal[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
18 | Lasek J A, Kopczyński M, Janusz M, et al. Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor[J]. Energy, 2017, 119: 362-368. |
19 | Chen W H, Lin B J, Lin Y Y, et al. Progress in biomass torrefaction: principles, applications and challenges[J]. Progress in Energy and Combustion Science, 2021, 82: 100887. |
20 | 孟春霖, 颜莹莹, 梁远, 等. 关于污泥火电厂协同焚烧的控制性指标的思考和建议[J]. 中国给水排水, 2021, 37(14): 46-55. |
Meng C L, Yan Y Y, Liang Y, et al. Thinking and suggestion on the control index of sludge co-incineration in thermal power plant[J]. China Water and Wastewater, 2021, 37(14): 46-55. | |
21 | Tumuluru J S, Wright C T, Hess J R, et al. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application[J]. Biofuels, Bioproducts and Biorefining, 2011, 5(6): 683-707. |
22 | Manouchehrinejad M, van Giesen I, Mani S. Grindability of torrefied wood chips and wood pellets[J]. Fuel Processing Technology, 2018, 182: 45-55. |
23 | Sakuragi K, Otaka M. Milling characteristics of coal and torrefied biomass blends in a roller mill[J]. ACS Omega, 2021, 6(44): 29814-29819. |
24 | 赵振伟, 陈雷, 伊晓路, 等. 烘焙提升纤维素类生物质热解气化性能的研究进展[J]. 化工进展, 2021, 40(5): 2509-2516. |
Zhao Z W, Chen L, Yi X L, et al. Research advances in improvement of cellulosic biomass pyrolysis/gasification process by torrefaction[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2509-2516. | |
25 | van der Stelt M J C, Gerhauser H, Kiel J H A, et al. Biomass upgrading by torrefaction for the production of biofuels: a review[J]. Biomass and Bioenergy, 2011, 35(9): 3748-3762. |
26 | Chen W H, Lu K M, Liu S H, et al. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities[J]. Bioresource Technology, 2013, 146: 152-160. |
27 | Uemura Y, Omar W, Othman N A, et al. Torrefaction of oil palm EFB in the presence of oxygen[J]. Fuel, 2013, 103: 156-160. |
28 | Zhao Z, Feng S, Zhao Y Y, et al. Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions[J]. Renewable Energy, 2022, 189: 1234-1248. |
29 | Dobó Z, Fry A. Investigation of co-milling Utah bituminous coal with prepared woody biomass materials in a Raymond Bowl Mill[J]. Fuel, 2018, 222: 343-349. |
30 | Rousset P, Aguiar C, Labbé N, et al. Enhancing the combustible properties of bamboo by torrefaction[J]. Bioresource Technology, 2011, 102(17): 8225-8231. |
31 | Sher F, Yaqoob A, Saeed F, et al. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation[J]. Energy, 2020, 209: 118444. |
32 | Nhuchhen D, Basu P, Acharya B. A comprehensive review on biomass torrefaction[J]. International Journal of Renewable Energy and Biofuels, 2014: 1-56. |
33 | Zhang L, Wang Z Z, Ma J, et al. Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction[J]. Fuel, 2022, 310: 122477. |
34 | Chen D Y, Cen K H, Cao X B, et al. Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 85-93. |
[1] | WU Guihao, ZHU Youjian, FAN Jiyuan, CHENG Wei, JIANG Hao, YANG Haiping, CHEN Hanping. Effects of the addition of NH4H2PO4 in corn stalk on torrefaction and PM emissions in fixed bed combustion [J]. CIESC Journal, 2021, 72(6): 3359-3367. |
[2] | Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751. |
[3] | JIANG Hao,ZHU Youjian,LIU Heng,SHAO Jing'ai,CHENG Wei,YANG Peng,WU Guihao,YANG Haiping,CHEN Hanping. Release and transformation characteristics of chlorine, sulfur and AAEMs during cornstalk torrefaction [J]. CIESC Journal, 2020, 71(12): 5785-5792. |
[4] | Jiangyuan QU, Nana QI, Yanjun GUAN, Yang TENG, Wenqing XU, Tingyu ZHU, Kai ZHANG. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower [J]. CIESC Journal, 2019, 70(6): 2117-2128. |
[5] | ZHU Jie, YE Shichao, WU Zhenyuan, BAI Jie, ZHENG Yijun. Mathematical modeling for height of absorption region in spray tower for limestone-gypsum wet flue gas desulfurization [J]. CIESC Journal, 2014, 65(8): 2896-2901. |
[6] | LIU Liyang, HAO Xuemi, LIU Chenguang, BAI Fengwu. Evaluation of instant catapult steam explosion combined with chemical pretreatments on corn stalk by components and enzymatic hydrolysis analysis [J]. CIESC Journal, 2014, 65(11): 4557-4563. |
[7] | WANG Yanjie,YING Hao,SUN Yunjuan,JIANG Junfei,YU Weijin,XU Yu. co-Pyrolysis characteristics of torrefied rice husk with different coalification degree coals [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 643-650. |
[8] | PAN Ling, YANG Peishan, CAO Youhong. Simulation of secondary dehydration flow field of WFGD direct-discharged chimney with and without hotwind [J]. CIESC Journal, 2013, 64(7): 2336-2343. |
[9] | LI Xiaomin,LIN Qizhao. Maximum probability mechanisms of pyrolysis of corn [J]. CIESC Journal, 2012, 63(8): 2599-2605. |
[10] | CHANG Chun1,WANG Duo1,2,WANG Linfeng2,MA Xiaojian1. Comparative study on processes of simultaneous saccharification and fermentation with high solid concentration for cellulosic ethanol production [J]. CIESC Journal, 2012, 63(3): 935-940. |
[11] | XIE Mei-Ying, LI Pei-Pei, GUO Hui-Feng, GAO Li-Xia, YU Jiang. Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization [J]. , 2012, 20(1): 140-145. |
[12] | LIU Wei,PANG Hao,JI Hongguo,LIAO Bing. Effect of different pretreatment methods on enzymatic hydrolysis of corn stalk with added Tween-80 [J]. , 2009, 28(10): 1868-. |
[13] | SU ,Donghai, SUN ,Junshe, LIU ,Ping, LÜ, ,Yanping. Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk [J]. , 2006, 14(6): 796-801. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||