CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3359-3367.DOI: 10.11949/0438-1157.20201476
• Energy and environmental engineering • Previous Articles Next Articles
WU Guihao1,3(),ZHU Youjian2,3(),FAN Jiyuan3,CHENG Wei3,JIANG Hao3,YANG Haiping3,CHEN Hanping3()
Received:
2020-10-22
Revised:
2021-01-17
Online:
2021-06-05
Published:
2021-06-05
Contact:
ZHU Youjian,CHEN Hanping
吴贵豪1,3(),朱有健2,3(),樊纪原3,成伟3,蒋好3,杨海平3,陈汉平3()
通讯作者:
朱有健,陈汉平
作者简介:
吴贵豪(1995—),男,硕士研究生,基金资助:
CLC Number:
WU Guihao, ZHU Youjian, FAN Jiyuan, CHENG Wei, JIANG Hao, YANG Haiping, CHEN Hanping. Effects of the addition of NH4H2PO4 in corn stalk on torrefaction and PM emissions in fixed bed combustion[J]. CIESC Journal, 2021, 72(6): 3359-3367.
吴贵豪, 朱有健, 樊纪原, 成伟, 蒋好, 杨海平, 陈汉平. 磷酸二氢铵对玉米秆烘焙及固定床燃烧颗粒物排放特性的影响[J]. 化工学报, 2021, 72(6): 3359-3367.
Add to citation manager EndNote|Ris|BibTeX
样品 | 工业分析/%(质量) | 元素分析/%(质量) | 原子比 | HHV/(MJ/kg) | HHV①/(MJ/kg) | 固碳率/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O② | N | S | O/C | H/C | ||||
CS | 8.69 | 73.87 | 17.44 | 43.06 | 5.72 | 41.27 | 0.74 | 0.52 | 0.96 | 0.13 | 16.16 | 17.70 | 100.00 |
CS220 | 9.47 | 71.53 | 19.00 | 45.76 | 5.69 | 37.62 | 1.05 | 0.41 | 0.82 | 0.12 | 17.77 | 19.63 | 98.85 |
CS220-ADP0.5 | 10.69 | 68.64 | 20.67 | 45.75 | 5.41 | 36.86 | 1.03 | 0.25 | 0.81 | 0.12 | 17.53 | 19.73 | 93.09 |
CS220-ADP1 | 13.27 | 66.79 | 19.94 | 45.90 | 5.36 | 33.92 | 1.29 | 0.25 | 0.74 | 0.12 | 17.29 | 19.91 | 90.28 |
CS220-ADP2 | 20.36 | 58.42 | 21.23 | 45.70 | 5.04 | 27.09 | 1.67 | 0.14 | 0.59 | 0.11 | 16.79 | 21.42 | 84.36 |
CS260 | 10.55 | 62.59 | 26.86 | 46.78 | 5.33 | 35.90 | 1.09 | 0.36 | 0.77 | 0.11 | 18.41 | 20.58 | 86.07 |
CS260-ADP0.5 | 11.40 | 63.00 | 25.60 | 46.91 | 5.19 | 35.06 | 1.24 | 0.21 | 0.75 | 0.11 | 18.14 | 20.39 | 83.46 |
CS260-ADP1 | 15.60 | 61.31 | 23.08 | 46.92 | 5.06 | 30.80 | 1.44 | 0.19 | 0.66 | 0.11 | 17.87 | 20.91 | 82.04 |
CS260-ADP2 | 16.41 | 57.87 | 25.72 | 47.47 | 4.86 | 29.51 | 1.65 | 0.10 | 0.62 | 0.10 | 17.31 | 23.25 | 80.00 |
CS300 | 11.29 | 45.45 | 43.26 | 55.55 | 4.55 | 26.78 | 1.41 | 0.41 | 0.48 | 0.08 | 20.11 | 22.67 | 63.99 |
CS300-ADP0.5 | 14.24 | 49.31 | 36.45 | 52.91 | 4.52 | 26.64 | 1.51 | 0.19 | 0.50 | 0.09 | 19.72 | 22.96 | 60.95 |
CS300-ADP1 | 19.36 | 46.99 | 33.65 | 52.91 | 4.37 | 21.56 | 1.63 | 0.18 | 0.41 | 0.08 | 19.38 | 23.89 | 64.64 |
CS300-ADP2 | 30.05 | 39.71 | 30.25 | 54.16 | 3.86 | 9.46 | 2.38 | 0.09 | 0.17 | 0.07 | 18.68 | 27.00 | 67.90 |
Table 1 Physical and chemical properties of experimental samples(dry basis)
样品 | 工业分析/%(质量) | 元素分析/%(质量) | 原子比 | HHV/(MJ/kg) | HHV①/(MJ/kg) | 固碳率/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O② | N | S | O/C | H/C | ||||
CS | 8.69 | 73.87 | 17.44 | 43.06 | 5.72 | 41.27 | 0.74 | 0.52 | 0.96 | 0.13 | 16.16 | 17.70 | 100.00 |
CS220 | 9.47 | 71.53 | 19.00 | 45.76 | 5.69 | 37.62 | 1.05 | 0.41 | 0.82 | 0.12 | 17.77 | 19.63 | 98.85 |
CS220-ADP0.5 | 10.69 | 68.64 | 20.67 | 45.75 | 5.41 | 36.86 | 1.03 | 0.25 | 0.81 | 0.12 | 17.53 | 19.73 | 93.09 |
CS220-ADP1 | 13.27 | 66.79 | 19.94 | 45.90 | 5.36 | 33.92 | 1.29 | 0.25 | 0.74 | 0.12 | 17.29 | 19.91 | 90.28 |
CS220-ADP2 | 20.36 | 58.42 | 21.23 | 45.70 | 5.04 | 27.09 | 1.67 | 0.14 | 0.59 | 0.11 | 16.79 | 21.42 | 84.36 |
CS260 | 10.55 | 62.59 | 26.86 | 46.78 | 5.33 | 35.90 | 1.09 | 0.36 | 0.77 | 0.11 | 18.41 | 20.58 | 86.07 |
CS260-ADP0.5 | 11.40 | 63.00 | 25.60 | 46.91 | 5.19 | 35.06 | 1.24 | 0.21 | 0.75 | 0.11 | 18.14 | 20.39 | 83.46 |
CS260-ADP1 | 15.60 | 61.31 | 23.08 | 46.92 | 5.06 | 30.80 | 1.44 | 0.19 | 0.66 | 0.11 | 17.87 | 20.91 | 82.04 |
CS260-ADP2 | 16.41 | 57.87 | 25.72 | 47.47 | 4.86 | 29.51 | 1.65 | 0.10 | 0.62 | 0.10 | 17.31 | 23.25 | 80.00 |
CS300 | 11.29 | 45.45 | 43.26 | 55.55 | 4.55 | 26.78 | 1.41 | 0.41 | 0.48 | 0.08 | 20.11 | 22.67 | 63.99 |
CS300-ADP0.5 | 14.24 | 49.31 | 36.45 | 52.91 | 4.52 | 26.64 | 1.51 | 0.19 | 0.50 | 0.09 | 19.72 | 22.96 | 60.95 |
CS300-ADP1 | 19.36 | 46.99 | 33.65 | 52.91 | 4.37 | 21.56 | 1.63 | 0.18 | 0.41 | 0.08 | 19.38 | 23.89 | 64.64 |
CS300-ADP2 | 30.05 | 39.71 | 30.25 | 54.16 | 3.86 | 9.46 | 2.38 | 0.09 | 0.17 | 0.07 | 18.68 | 27.00 | 67.90 |
样品 | Yield/(mg/g fuel) | (PM1 / PM10)/% | ||||||
---|---|---|---|---|---|---|---|---|
PM0.1 | PM0.1-1 | PM1 | PM1-2.5 | PM2.5 | PM2.5-10 | PM10 | ||
CS | 0.466±0.096 | 7.511±0.302 | 7.977±0.347 | 1.122±0.078 | 9.099±0.426 | 0.939±0.046 | 10.038±0.473 | 79.47 |
CS220 | 0.252±0.095 | 9.334±0.184 | 9.586±0.278 | 1.332±0.052 | 10.918±0.332 | 1.027±0.018 | 11.945±0.313 | 80.25 |
CS260 | 0.199±0.027 | 10.277±0.259 | 10.476±0.545 | 1.814±0.323 | 12.290±0.221 | 1.274±0.109 | 13.564±0.111 | 77.23 |
CS300 | 0.338±0.087 | 13.743±0.393 | 14.081±0.481 | 3.309±0.170 | 17.390±0.310 | 2.536±0.070 | 19.926±0.239 | 70.67 |
Table 2 The yield of PM in each size range and the proportion of PM1 in PM10 during combustion of torrefied corn stalk
样品 | Yield/(mg/g fuel) | (PM1 / PM10)/% | ||||||
---|---|---|---|---|---|---|---|---|
PM0.1 | PM0.1-1 | PM1 | PM1-2.5 | PM2.5 | PM2.5-10 | PM10 | ||
CS | 0.466±0.096 | 7.511±0.302 | 7.977±0.347 | 1.122±0.078 | 9.099±0.426 | 0.939±0.046 | 10.038±0.473 | 79.47 |
CS220 | 0.252±0.095 | 9.334±0.184 | 9.586±0.278 | 1.332±0.052 | 10.918±0.332 | 1.027±0.018 | 11.945±0.313 | 80.25 |
CS260 | 0.199±0.027 | 10.277±0.259 | 10.476±0.545 | 1.814±0.323 | 12.290±0.221 | 1.274±0.109 | 13.564±0.111 | 77.23 |
CS300 | 0.338±0.087 | 13.743±0.393 | 14.081±0.481 | 3.309±0.170 | 17.390±0.310 | 2.536±0.070 | 19.926±0.239 | 70.67 |
样品 | Yield/(mg/g fuel) | (PM1 / PM10)/% | ||||||
---|---|---|---|---|---|---|---|---|
PM0.1 | PM0.1-1 | PM1 | PM1-2.5 | PM2.5 | PM2.5-10 | PM10 | ||
CS300 | 0.338±0.087 | 13.743±0.393 | 14.081±0.481 | 3.309±0.170 | 17.390±0.310 | 2.536±0.070 | 19.926±0.239 | 70.67 |
CS300-ADP0.5 | 0.230±0.044 | 11.857±0.193 | 12.087±0.148 | 3.840±0.001 | 15.927±0.146 | 1.794±0.033 | 17.721±0.112 | 68.21 |
CS300-ADP1 | 0.741±0.245 | 9.282±0.713 | 10.023±0.959 | 4.083±0.319 | 14.105±0.639 | 1.809±0.156 | 15.914±0.483 | 62.98 |
CS300-ADP2 | 0.669±0.168 | 10.756±0.228 | 11.425±0.397 | 5.286±0.232 | 16.711±0.630 | 2.665±0.006 | 19.377±0.637 | 58.96 |
Table 3 The yield of PM in each size range and the proportion of PM1 in PM10 during combustion of torrefied sample
样品 | Yield/(mg/g fuel) | (PM1 / PM10)/% | ||||||
---|---|---|---|---|---|---|---|---|
PM0.1 | PM0.1-1 | PM1 | PM1-2.5 | PM2.5 | PM2.5-10 | PM10 | ||
CS300 | 0.338±0.087 | 13.743±0.393 | 14.081±0.481 | 3.309±0.170 | 17.390±0.310 | 2.536±0.070 | 19.926±0.239 | 70.67 |
CS300-ADP0.5 | 0.230±0.044 | 11.857±0.193 | 12.087±0.148 | 3.840±0.001 | 15.927±0.146 | 1.794±0.033 | 17.721±0.112 | 68.21 |
CS300-ADP1 | 0.741±0.245 | 9.282±0.713 | 10.023±0.959 | 4.083±0.319 | 14.105±0.639 | 1.809±0.156 | 15.914±0.483 | 62.98 |
CS300-ADP2 | 0.669±0.168 | 10.756±0.228 | 11.425±0.397 | 5.286±0.232 | 16.711±0.630 | 2.665±0.006 | 19.377±0.637 | 58.96 |
1 | Barskov S, Zappi M, Buchireddy P, et al. Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks[J]. Renewable Energy, 2019, 142: 624-642. |
2 | Ong H C, Chen W, Singh Y, et al. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach[J]. Energy Conversion and Management, 2020, 209: 112634. |
3 | Chen Z, Wang M, Jiang E, et al. Pyrolysis of torrefied biomass[J]. Trends in Biotechnology, 2018, 36(12): 1287-1298. |
4 | Hernández J J, Lapuerta M, Monedero E, et al. Biomass quality control in power plants: technical and economical implications[J]. Renewable Energy, 2018, 115: 908-916. |
5 | Niu Y, Lv Y, Lei Y, et al. Biomass torrefaction: properties, applications, challenges, and economy[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109395. |
6 | Xin S, Mi T, Liu X, et al. Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues[J]. Energy, 2018, 152: 586-593. |
7 | Wang L, Barta-Rajnai E, Skreiberg Ø, et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark[J]. Applied Energy, 2018, 227: 137-148. |
8 | van Lith S C, Jensen P A, Frandsen F J, et al. Release to the gas phase of inorganic elements during wood combustion (Part 2): Influence of fuel composition[J]. Energy & Fuels, 2008, 22(3): 1598-1609. |
9 | Johansen J M, Jakobsen J G, Frandsen F J, et al. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass[J]. Energy & Fuels, 2011, 25(11): 4961-4971. |
10 | Saleh S B, Flensborg J P, Shoulaifar T K, et al. Release of chlorine and sulfur during biomass torrefaction and pyrolysis[J]. Energy & Fuels, 2014, 28(6): 3738-3746. |
11 | Chen D, Gao A, Ma Z, et al. In-depth study of rice husk torrefaction: characterization of solid, liquid and gaseous products, oxygen migration and energy yield[J]. Bioresource Technology, 2018, 253: 148-153. |
12 | Yani S, Gao X, Wu H. Emission of Inorganic PM10 from the combustion of torrefied biomass under pulverized-fuel conditions[J]. Energy & Fuels, 2015, 29(2): 800-807. |
13 | Hu Z, Wang X, Adeosun A, et al. Aggravated fine particulate matter emissions from heating-upgraded biomass and biochar combustion: the effect of pretreatment temperature[J]. Fuel Processing Technology, 2018, 171: 1-9. |
14 | Kai X, Meng Y, Yang T, et al. Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion[J]. Bioresource Technology, 2019, 278: 1-8. |
15 | Xu Y, Liu X, Zhang Y, et al. A novel Ti-based sorbent for reducing ultrafine particulate matter formation during coal combustion[J]. Fuel, 2017, 193: 72-80. |
16 | Si J, Liu X, Xu M, et al. Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114: 434-444. |
17 | Yang W, Zhu Y, Cheng W, et al. Effect of minerals and binders on particulate matter emission from biomass pellets combustion[J]. Applied Energy, 2018, 215: 106-115. |
18 | 樊纪原, 朱有健, 吴贵豪, 等. 磷酸二氢铵对生物质燃烧过程中颗粒物排放特性的影响[J]. 中国电机工程学报, 2020, 40(1): 176-182. |
Fan J Y, Zhu Y J, Wu G H, et al. Effect of NH4H2PO4 additives on PM emissions from the combustion of biomass [J]. Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(1): 176-182. | |
19 | Liu X R, Yuan L J, Yang X D. Evolution of chemical functional groups during torrefaction of rice straw[J]. Bioresource Technology, 2021, 320: 124328. |
20 | Shao J A, Cheng W, Zhu Y, et al. Effects of combined torrefaction and pelletization on particulate matter emission from biomass pellet combustion[J]. Energy & Fuels, 2019, 33(9): 8777-8785. |
21 | 刘恒. 烘焙对玉米秆Cl、S及AAEMs迁徙转化特性影响的研究[D]. 武汉: 华中科技大学, 2019 |
Liu H. Effects of torrefaction on migration and transformation characteristics of Cl, S and AAEMs in corn stalks [D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
22 | Zhao L, Cao X, Zheng W, et al. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1630-1636. |
23 | 赵乘寿, 宫聪, 汪鹏, 等.含磷酸二氢铵细水雾灭火有效性研究[J].消防科学与技术, 2011, 30(9): 822-824. |
Zhao C S, Gong C, Wang P, et al. Experimental study on fire suppression effectiveness of water mist with ammonium dihydrogen phosphate[J]. Fire Science and Technology, 2011, 30(9): 822-824. | |
24 | 贡长生. 现代磷化工技术和应用[M]. 北京: 化学工业出版社, 2013: 843-860. |
Gong C S. Modern Phosphorus Chemical Technology and Application[M]. Beijing: Chemical Industry Press, 2013: 843-860. | |
25 | Wang Q, Han K, Gao J, et al. Investigation of maize straw char briquette ash fusion characteristics and the influence of phosphorus additives[J]. Energy & Fuels, 2017, 31(3): 2822-2830. |
26 | Zhu Y, Fan J, Yang P, et al. P-based additive for reducing fine particulate matter emissions during agricultural biomass combustion[J]. Energy & Fuels, 2019, 33(11): 11274-11284. |
27 | 赵京, 张玉锋, 魏小林, 等. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120. |
Zhao J, Zhang Y F, Wei X L, et al. PM1 formation characteristics during high-alkali coal combustion [J]. CIESC Journal, 2019, 70(8): 3113-3120. | |
28 | 郑传杰, 盛昌栋. 高温烟气中吸附剂捕集K的模型及其反应动力学研究[J]. 化工学报, 2019, 70(6): 2259-2268. |
Zheng C J, Sheng C D. Modeling and reaction kinetics study on K capture by adsorbents in high temperature flue gas [J]. CIESC Journal, 2019, 70(6): 2259-2268. | |
29 | 于敦喜, 徐明厚, 易帆, 等. 燃煤过程中颗粒物的形成机理研究进展[J]. 煤炭转化, 2004, (4): 7-12. |
Yu D X, Xu M H, Yi F, et al. A review on particle formation mechanisms during coal combustion [J]. Coal Conversion, 2004, (4): 7-12. | |
30 | 孔卉茹, 张媛媛, 李永茂, 等. 低热值煤电厂配煤技术研究进展[J]. 洁净煤技术, 2016, 22(6): 1-9. |
Kong H R, Zhang Y Y, Li Y M, et al. Development tendency of coal blending technologies in coal-fired power plants burning low calorific value coal [J]. Clean Coal Technology, 2016, 22(6): 1-9. | |
31 | Novaković A, van Lith S C, Frandsen F J, et al. Release of potassium from the systems K-Ca-Si and K-Ca-P[J]. Energy & Fuels, 2009, 23(7): 3423-3428. |
[1] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[2] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[3] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[4] | JIANG Hao,ZHU Youjian,LIU Heng,SHAO Jing'ai,CHENG Wei,YANG Peng,WU Guihao,YANG Haiping,CHEN Hanping. Release and transformation characteristics of chlorine, sulfur and AAEMs during cornstalk torrefaction [J]. CIESC Journal, 2020, 71(12): 5785-5792. |
[5] | Bin LIANG, Haolong BAI, Qiang FENG, Hua SONG, Tian LAN, Xinhua LIU. polycyclic aromatic hydrocarbons from household coal combustionsEmissions of particulate matter and [J]. CIESC Journal, 2019, 70(8): 2888-2897. |
[6] | Jingying XU, Jiankun ZHUO, Qiang YAO. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion [J]. CIESC Journal, 2019, 70(8): 2823-2834. |
[7] | Zhongqian LING, Chao ZHOU, Xianyang ZENG, Bo LING, Jiongjie QIAN. Experimental study on pollutant emission characteristics of lower-heat-value ethylene combustion in porous media [J]. CIESC Journal, 2019, 70(11): 4346-4355. |
[8] | LIU Fangqi, YU Dunxi, WU Jianqun, LEI Yu, WEN Chang, XU Minghou. Effect of SCR on particulate matter emissions from a coal-fired boiler [J]. CIESC Journal, 2018, 69(9): 4051-4057. |
[9] | CUI Jian, DUAN Lunbo, ZHAO Changsui. Emission characteristics of sulfurous pollutant from circulating fluidized bed boilers co-firing petroleum coke and coal [J]. CIESC Journal, 2018, 69(5): 2158-2165. |
[10] | ZHANG Hao, YU Junyi, LIU Xiaohui, LEI Hong. Prediction of fine particulate matter concentrations based on generalized hidden Markov model [J]. CIESC Journal, 2018, 69(3): 1215-1220. |
[11] | XU Yishu, LIU Xiaowei, ZHANG Penghui, GUO Junzhe, HAN Jinke, WANG Hao, WEI Siyi. Impacts of typical mineral matter in Zhundong coal on formation of particulate matter [J]. CIESC Journal, 2017, 68(4): 1558-1565. |
[12] | SUN Wei, LIU Xiaowei, XU Yishu, CHEN Dong, ZHANG Yu, CUI Jiang, XU Minghou. Contrastive analysis of reducing ultrafine particulate matters emission by two modified kaolin [J]. CIESC Journal, 2016, 67(4): 1179-1185. |
[13] | WANG Qi, CHEN Jia, WANG Chao, LI Min, CHEN Tong, LU Shengyong, LI Xiaodong, JIANG Xuguang, YAN Jianhua. PCDD/Fs emission characteristics of medical waste incinerator during start-up procedure [J]. CIESC Journal, 2015, 66(1): 419-425. |
[14] | WANG Chao, LIU Xiaowei, WU Jianqun, ZHOU Zijian, CHEN Jun, XU Minghou. Migration and distribution characteristics of trace elements in 220 MW cogeneration boiler [J]. CIESC Journal, 2014, 65(9): 3604-3608. |
[15] | Wang Chao, Liu Xiaowei, Wu Jianqun, Zhou Zijian, Chen Jun, Xu Minghou. Migration and Distribution Characteristics of Trace Elements in 220 MW Cogeneration Boiler [J]. CIESC Journal, 2014, 65(9): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||