CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 64-73.DOI: 10.11949/0438-1157.20221670
• Thermodynamics • Previous Articles Next Articles
Baomin DAI(), Qilong WANG, Shengchun LIU(
), Jianing ZHANG, Xinhai LI, Fandi ZONG
Received:
2022-12-29
Revised:
2023-02-04
Online:
2023-09-27
Published:
2023-06-05
Contact:
Shengchun LIU
代宝民(), 王启龙, 刘圣春(
), 张佳宁, 李鑫海, 宗凡迪
通讯作者:
刘圣春
作者简介:
代宝民(1987—),男,博士,副教授,dbm@tjcu.edu.cn
基金资助:
CLC Number:
Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled[J]. CIESC Journal, 2023, 74(S1): 64-73.
代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73.
工质 | 物理性质 | 安全特性 | 环境特性 | ||||||
---|---|---|---|---|---|---|---|---|---|
分子量 | Tb/℃ | Tcr/℃ | pcr/MPa | LEL/% | 安全等级 | 大气寿命/a | ODP | GWP | |
R744 | 44.01 | -78.5 | 31.1 | 7.38 | — | A1 | >50 | 0 | 1 |
R1270 | 42.08 | -47.7 | 92.4 | 4.66 | 2.0 | A3 | 0.001 | 0 | -20 |
R601 | 72.15 | 36.1 | 196.6 | 3.37 | A3 | 0 | 4 | ||
R290 | 44.10 | -42.1 | 96.7 | 4.25 | 2.1 | A3 | 0.041 | 0 | 约20 |
R161 | 48.06 | -37.6 | 102.2 | 5.09 | 3.8 | — | 0.21 | 0 | 12 |
R32 | 52.02 | -51.7 | 78.1 | 5.78 | 14.1 | A2 | 4.9 | 0 | 675 |
R1234ze(Z) | 114.04 | 9.0 | 153.6 | 3.97 | — | — | — | — | <6 |
R600 | 58.12 | -0.49 | 152.0 | 3.8 | 1.85 | A3 | — | 0 | 0.1 |
R1234yf | 114.04 | -29.5 | 94.7 | 3.38 | 6.2 | A2L | 0.029 | 0 | <4.4 |
R152a | 66.05 | -24.0 | 113.3 | 4.52 | 4.8 | A2 | 1.4 | 0 | 124 |
Table 1 The physical properties, safety and environmental characteristics of refrigerant[28]
工质 | 物理性质 | 安全特性 | 环境特性 | ||||||
---|---|---|---|---|---|---|---|---|---|
分子量 | Tb/℃ | Tcr/℃ | pcr/MPa | LEL/% | 安全等级 | 大气寿命/a | ODP | GWP | |
R744 | 44.01 | -78.5 | 31.1 | 7.38 | — | A1 | >50 | 0 | 1 |
R1270 | 42.08 | -47.7 | 92.4 | 4.66 | 2.0 | A3 | 0.001 | 0 | -20 |
R601 | 72.15 | 36.1 | 196.6 | 3.37 | A3 | 0 | 4 | ||
R290 | 44.10 | -42.1 | 96.7 | 4.25 | 2.1 | A3 | 0.041 | 0 | 约20 |
R161 | 48.06 | -37.6 | 102.2 | 5.09 | 3.8 | — | 0.21 | 0 | 12 |
R32 | 52.02 | -51.7 | 78.1 | 5.78 | 14.1 | A2 | 4.9 | 0 | 675 |
R1234ze(Z) | 114.04 | 9.0 | 153.6 | 3.97 | — | — | — | — | <6 |
R600 | 58.12 | -0.49 | 152.0 | 3.8 | 1.85 | A3 | — | 0 | 0.1 |
R1234yf | 114.04 | -29.5 | 94.7 | 3.38 | 6.2 | A2L | 0.029 | 0 | <4.4 |
R152a | 66.05 | -24.0 | 113.3 | 4.52 | 4.8 | A2 | 1.4 | 0 | 124 |
1 | 董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1): 133-144. |
Dong Y X, Wang R Z. High temperature heat pump: cycle configurations, working fluids and application potentials[J]. CIESC Journal, 2023, 74(1): 133-144. | |
2 | UNEP Ozone Secretariat. In twenty-eighth meeting of the parties to the montreal Protocol on substances that deplete the ozone layer: 10-14 October 2016[R]. Kigali, Rwanda, 2016. |
3 | Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5): 292-301. |
4 | Song Y L, Cui C, Yin X, et al. Advanced development and application of transcritical CO2 refrigeration and heat pump technology—A review[J]. Energy Reports, 2022, 8: 7840-7869. |
5 | Ma Y T, Liu Z Y, Tian H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy, 2013, 55: 156-172. |
6 | Kim M H, Pettersen J, Bullard C W. Fundamental process and system design issues in CO2 vapor compression systems[J]. Progress in Energy and Combustion Science, 2004, 30(2): 119-174. |
7 | Kauf F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles[J]. International Journal of Thermal Sciences, 1999, 38(4): 325-330. |
8 | Llopis R, Cabello R, Sánchez D, et al. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2015, 55: 129-141. |
9 | Llopis R, Nebot-Andrés L, Cabello R, et al. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2016, 69: 361-368. |
10 | 代宝民, 刘圣春, 孙志利, 等. 机械过冷CO2跨临界制冷循环性能理论分析[J]. 制冷学报, 2018, 39(1): 13-19. |
Dai B M, Liu S C, Sun Z L, et al. Theoretical performance analysis of CO2 transcritical refrigeration cycle with mechanical subcooling[J]. Journal of Refrigeration, 2018, 39(1): 13-19. | |
11 | Nebot-Andrés L, Sánchez D, Calleja-Anta D, et al. Experimental determination of the optimum working conditions of a commercial transcritical CO2 refrigeration plant with a R-152a dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2021, 121: 258-268. |
12 | Nebot-Andrés L, Calleja-Anta D, Sánchez D, et al. Experimental assessment of dedicated and integrated mechanical subcooling systems vs parallel compression in transcritical CO2 refrigeration plants[J]. Energy Conversion and Management, 2022, 252: 115051. |
13 | Liu S C, Lu F P, Dai B M, et al. Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit[J]. Energy, 2019, 189: 116143. |
14 | Cao F, Cui C, Wei X Y, et al. The experimental investigation on a novel transcritical CO2 heat pump combined system for space heating[J]. International Journal of Refrigeration, 2019, 106: 539-548. |
15 | Song Y L, Li D Z, Yang D F, et al. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating[J]. International Journal of Refrigeration, 2017, 74: 592-605. |
16 | Song Y L, Cao F. The evaluation of the optimal medium temperature in a space heating used transcritical air-source CO2 heat pump with an R134a subcooling device[J]. Energy Conversion and Management, 2018, 166: 409-423. |
17 | He Y J, Cheng J H, Chang M M, et al. Modified transcritical CO2 heat pump system with new water flow configuration for residential space heating[J]. Energy Conversion and Management, 2021, 230: 113791. |
18 | Cheng J H, He Y J, Zhang C L. New scenario of CO2 heat pump for space heating: automatic mode switch between modified transcritical and cascade cycle in one system[J]. Applied Thermal Engineering, 2021, 191: 116864. |
19 | 梁坤峰, 冯长振, 王莫然, 等. 非共沸工质换热匹配特性影响热泵性能的高级㶲分析[J]. 化工学报, 2021, 72(4): 2038-2046. |
Liang K F, Feng C Z, Wang M R, et al. Advanced exergy analysis of heat pump performance affected by heat transfer matching characteristics of non-azeotropic refrigerants[J]. CIESC Journal, 2021, 72(4): 2038-2046. | |
20 | Dai B M, Liu S C, Li H L, et al. Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant[J]. Energy, 2018, 150: 205-221. |
21 | Llopis R, Toffoletti G, Nebot-Andrés L, et al. Experimental evaluation of zeotropic refrigerants in a dedicated mechanical subcooling system in a CO2 cycle[J]. International Journal of Refrigeration, 2021, 128: 287-298. |
22 | Yao L, Li M X, Hu Y S, et al. Comparative study of upgraded CO2 transcritical air source heat pump systems with different heat sinks[J]. Applied Thermal Engineering, 2021, 184: 116289. |
23 | 林励冠, 代彦军, Armin Hafner. 两级R744超市中央制冷系统节能特性[J]. 化工学报, 2018, 69(S2): 394-401. |
Lin L G, Dai Y J, Armin H. Performance of R744 commercial centralized refrigeration systems[J]. CIESC Journal, 2018, 69(S2): 394-401. | |
24 | 李敏霞, 詹浩淼, 王派, 等. 一种带引射器和经济器的CO2跨临界制冷系统[J]. 化工学报, 2021, 72(S1): 146-152. |
Li M X, Zhan H M, Wang P, et al. A CO2 transcritical refrigeration system with ejector and economizer[J]. CIESC Journal, 2021, 72(S1): 146-152. | |
25 | 代宝民, 剧成成, 粱梦桃, 等. 机械过冷跨临界CO2热泵供暖系统性能分析[J]. 制冷学报, 2019, 40(4): 29-36. |
Dai B M, Ju C C, Liang M T, et al. Performance analysis of a transcritical CO2 heat pump with mechanical subcooling for space heating[J]. Journal of Refrigeration, 2019, 40(4): 29-36. | |
26 | 李小燕, 代宝民, 滑雪, 等. 基于引射器的双温蒸发CO2热泵系统性能分析[J]. 制冷学报, 2022, 43(2): 54-61. |
Li X Y, Dai B M, Hua X, et al. Performance analysis of CO2 dual-temperature evaporation heat pump system with an ejector[J]. Journal of Refrigeration, 2022, 43(2): 54-61. | |
27 | Zühlsdorf B, Jensen J K, Cignitti S, et al. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides[J]. Energy, 2018, 153: 650-660. |
28 | Calm J M, Hourahan G C. Physical, safety, and environmental data for current and alternative refrigerants[C]//Proceedings of 23rd international congress of refrigeration (ICR2011. Prague, RepublicCzech, 2011: 21-26. |
29 | 代宝民, 张鹏, 刘圣春, 等. 采用非共沸工质机械过冷跨临界CO2热泵供暖性能分析[J]. 制冷学报, 2021, 42(6): 51-58. |
Dai B M, Zhang P, Liu S C, et al. Performance of transcritical CO2 air-source heat pump heating system with mechanical subcooling using zeotropic refrigerant[J]. Journal of Refrigeration, 2021, 42(6): 51-58. | |
30 | Liao S M, Zhao T S, Jakobsen A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles[J]. Applied Thermal Engineering, 2000, 20(9): 831-841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||