CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 74-86.DOI: 10.11949/0438-1157.20221605
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Cheng CHENG1,2(), Zhongdi DUAN1(
), Haoran SUN3, Haitao HU3, Hongxiang XUE1
Received:
2022-12-13
Revised:
2023-01-09
Online:
2023-09-27
Published:
2023-06-05
Contact:
Zhongdi DUAN
程成1,2(), 段钟弟1(
), 孙浩然3, 胡海涛3, 薛鸿祥1
通讯作者:
段钟弟
作者简介:
程成(1994—),男,硕士,助理工程师,chengcheng94@sjtu.edu.cn
基金资助:
CLC Number:
Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling[J]. CIESC Journal, 2023, 74(S1): 74-86.
程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86.
参数 | 数值 | 文献 |
---|---|---|
运动黏度υf/(m2/s) | 1×10-6 | — |
扩散系数Ds/(m2/s) | 0.79×10-9 | [ |
析晶常数k0/(m4/(kg·s2)) | 1.65×1022 | [ |
活化能Ea/(kJ/mol) | 179 | [ |
气体常数R/(J/(mol·K)) | 8.314 | — |
流体密度ρl /(kg/m3) | 971 | [ |
碳酸钙密度ρcrystal/(kg/m3) | 2870 | [ |
流体热导率λl /(W/(m·K)) | 0.66 | [ |
碳酸钙热导率λcrystal/(W/(m·K)) | 5.09 | [ |
Table 1 Constant settings for numerical models
参数 | 数值 | 文献 |
---|---|---|
运动黏度υf/(m2/s) | 1×10-6 | — |
扩散系数Ds/(m2/s) | 0.79×10-9 | [ |
析晶常数k0/(m4/(kg·s2)) | 1.65×1022 | [ |
活化能Ea/(kJ/mol) | 179 | [ |
气体常数R/(J/(mol·K)) | 8.314 | — |
流体密度ρl /(kg/m3) | 971 | [ |
碳酸钙密度ρcrystal/(kg/m3) | 2870 | [ |
流体热导率λl /(W/(m·K)) | 0.66 | [ |
碳酸钙热导率λcrystal/(W/(m·K)) | 5.09 | [ |
入口流速uin/ (m/s) | Vortex length in LBM/mm | Vortex length in Comsol/mm |
---|---|---|
0.01 | 0.4398 | 0.4608 |
0.02 | 0.6854 | 0.6550 |
0.03 | 0.9029 | 0.8468 |
0.04 | 1.1041 | 1.0596 |
0.05 | 1.3053 | 1.2094 |
Table 2 Validation of vortex length near microstructural elements
入口流速uin/ (m/s) | Vortex length in LBM/mm | Vortex length in Comsol/mm |
---|---|---|
0.01 | 0.4398 | 0.4608 |
0.02 | 0.6854 | 0.6550 |
0.03 | 0.9029 | 0.8468 |
0.04 | 1.1041 | 1.0596 |
0.05 | 1.3053 | 1.2094 |
计算工况 | 数量n | 相邻微结构间距d/mm | 微结构横截面高h/mm | 微结构横截面宽w/mm | 首个微结构与入口距离Lin/mm |
---|---|---|---|---|---|
case_d or case_h | 10 | 2 | 0.4 | 0.4 | 6 |
case_+d | 4 | 6 | 0.4 | 0.4 | 6 |
case_-d | 19 | 1 | 0.4 | 0.4 | 6 |
case_-h | 10 | 2 | 0.2 | 0.4 | 6 |
case_+h | 10 | 2 | 0.6 | 0.4 | 6 |
Table 3 Microstructure cases with different spacing and height
计算工况 | 数量n | 相邻微结构间距d/mm | 微结构横截面高h/mm | 微结构横截面宽w/mm | 首个微结构与入口距离Lin/mm |
---|---|---|---|---|---|
case_d or case_h | 10 | 2 | 0.4 | 0.4 | 6 |
case_+d | 4 | 6 | 0.4 | 0.4 | 6 |
case_-d | 19 | 1 | 0.4 | 0.4 | 6 |
case_-h | 10 | 2 | 0.2 | 0.4 | 6 |
case_+h | 10 | 2 | 0.6 | 0.4 | 6 |
计算工况 | 数量n | 相邻微结构间距d/ mm | 微结构横截面高h/ mm | 微结构横截面宽w/ mm | 首个微结构与入口距离Lin/ mm |
---|---|---|---|---|---|
case_1 | 0 | — | — | — | — |
case_2 | 19 | 1 | 0.4 | 0.1 | 6 |
case_3 | 19 | 1 | 0.6 | 0.1 | 6 |
case_4 | 19 | 1 | 0.8 | 0.1 | 6 |
Table 4 Crystallization growth cases under different height microstructure settings
计算工况 | 数量n | 相邻微结构间距d/ mm | 微结构横截面高h/ mm | 微结构横截面宽w/ mm | 首个微结构与入口距离Lin/ mm |
---|---|---|---|---|---|
case_1 | 0 | — | — | — | — |
case_2 | 19 | 1 | 0.4 | 0.1 | 6 |
case_3 | 19 | 1 | 0.6 | 0.1 | 6 |
case_4 | 19 | 1 | 0.8 | 0.1 | 6 |
1 | 张仲彬, 李煜, 杜祥云, 等. 水质对板式换热器结垢的影响权重及其机制分析[J]. 中国电机工程学报, 2012, 32(32): 69-74, 12. |
Zhang Z B, Li Y, Du X Y, et al. Influences of water quality's effect weights and mechanisms on fouling of plate heat exchangers[J]. Proceedings of the CSEE, 2012, 32(32): 69-74, 12. | |
2 | 徐志明, 郭进生, 黄兴, 等. 水质参数与板式换热器结垢的关联[J]. 化工学报, 2011, 62(2): 344-347. |
Xu Z M, Guo J S, Huang X, et al. Relationship between water quality parameters and fouling in plate heat exchangers[J]. CIESC Journal, 2011, 62(2): 344-347. | |
3 | 王佳豪, 王丁. 油田管道结垢的成因及数值模拟结垢研究[J]. 辽宁化工, 2022, 51(5): 617-619, 628. |
Wang J H, Wang D. Study on causes and numerical simulation of pipeline fouling in oilfields[J]. Liaoning Chemical Industry, 2022, 51(5): 617-619, 628. | |
4 | 赵中华, 邢晓凯, 周恒, 等. 表面特性对污垢结垢行为影响研究综述[J]. 石油化工高等学校学报, 2018, 31(2): 89-95. |
Zhao Z H, Xing X K, Zhou H, et al. Review on the effect of surface characteristics on fouling behavior[J]. Journal of Petrochemical Universities, 2018, 31(2): 89-95. | |
5 | 孔祥兵. 换热器管内颗粒污垢生长特性试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
Kong X B. The experimental investigation of the particulate fouling growth characteristics in heat exchanger tube[D]. Harbin: Harbin Institute of Technology, 2008. | |
6 | 刘义达, 邹勇, 赵亮, 等. 表面粗糙度对析晶污垢附着的影响[J]. 工程热物理学报, 2010, 31(8): 1355-1358. |
Liu Y D, Zou Y, Zhao L, et al. Effect of surface roughness on adhesion of crystalline fouling[J]. Journal of Engineering Thermophysics, 2010, 31(8): 1355-1358. | |
7 | Keysar S, Semiat R, Hasson D, et al. Effect of surface roughness on the morphology of calcite crystallizing on mild steel[J]. Journal of Colloid and Interface Science, 1994, 162(2): 311-319. |
8 | Pääkkönen T M, Riihimäki M, Simonson C J, et al. Modeling CaCO3 crystallization fouling on a heat exchanger surface — Definition of fouling layer properties and model parameters[J]. International Journal of Heat and Mass Transfer, 2015, 83: 84-98. |
9 | Pääkkönen T M, Riihimäki M, Simonson C J, et al. Crystallization fouling of CaCO3 — analysis of experimental thermal resistance and its uncertainty[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6927-6937. |
10 | Zhang F, Xiao J, Chen X D. Towards predictive modeling of crystallization fouling: a pseudo-dynamic approach[J]. Food and Bioproducts Processing, 2015, 93: 188-196. |
11 | Chen L, Kang Q J, Mu Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. |
12 | 康利云, 阚安康, 曹丹, 等. 基于Lattice-Boltzmann方法的泡沫材料有效热导率研究[J]. 制冷技术, 2015, 35(3): 15-18. |
Kang L Y, Kan A K, Cao D, et al. Research on effective thermal conductivity of foam material based on lattice-Boltzmann method[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 15-18. | |
13 | Huang J T, Yang W A. Boundary conditions of the lattice Boltzmann method for convection-diffusion equations[J]. Journal of Computational Physics, 2015, 300: 70-91. |
14 | Huang H B, Lu X Y, Sukop M C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(5): 055001. |
15 | Sotiropoulos F, Yang X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65: 1-21. |
16 | 孙梅玉, 姬忠礼. 陶瓷过滤管基体内三维气体流动的格子Boltzmann方法模拟[J]. 化工学报, 2008, 59(12): 3027-3032. |
Sun M Y, Ji Z L. Lattice Boltzmann simulations of three-dimensional gaseous flows through ceramic filter matrixes[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 3027-3032. | |
17 | Zhou L, Qu Z G, Ding T, et al. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media[J]. Physical Review. E, 2016, 93: 043101. |
18 | 穆嫒萍, 叶丁丁, 陈蓉, 等. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287, 3393. |
Mu A P, Ye D D, Chen R, et al. LB simulation of anode mass transfer characteristics in cotton thread-based microfluidic fuel cell[J]. CIESC Journal, 2020, 71(7): 3278-3287, 3393. | |
19 | 郭亚丽, 徐鹤函, 沈胜强, 等. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流[J]. 物理学报, 2013, 62(14): 318-323. |
Guo Y L, Xu H H, Shen S Q, et al. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method[J]. Acta Physica Sinica, 2013, 62(14): 318-323. | |
20 | 马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014, 65(S1): 180-187. |
Ma Q, Chen J, Chen Z Q. Lattice Boltzmann simulation for heat and mass transfer in fractal porous media[J]. CIESC Journal, 2014, 65(S1): 180-187. | |
21 | He P. Lattice Boltzmann method simulation of ice melting process in the gas diffusion layer of fuel cell[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119121. |
22 | 郭亚丽, 徐鹤函, 沈胜强. 纳米流体液滴在水平加热面上的变形行为特性[J]. 化工学报, 2012, 63(10): 3057-3061. |
Guo Y L, Xu H H, Shen S Q. Deformation behavior of nanofluid droplet on heated horizontal surface[J]. CIESC Journal, 2012, 63(10): 3057-3061. | |
23 | 周伟煜, 梁文清, 钱华, 等. 固空沉积的数值模拟[J]. 制冷技术, 2019, 39(1): 21-27, 60. |
Zhou W Y, Liang W Q, Qian H, et al. Numerical simulation of sedimentary formation of solid air[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 21-27, 60. | |
24 | Chen L, Kang Q J, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(4): 043306. |
25 | Chen L. Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2014, 75: 483-496. |
26 | Kang Q J, Zhang D X, Lichtner P C, et al. Lattice Boltzmann model for crystal growth from supersaturated solution[J]. Geophysical Research Letters, 2004, 31(21): 133-147. |
27 | Chen L. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. |
28 | Sullivan S P, Sani F M, Johns M L, et al. Simulation of packed bed reactors using lattice Boltzmann methods[J]. Chemical Engineering Science, 2005, 60(12): 3405-3418. |
29 | Tang S Z, Wang F L, Ren Q L, et al. Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms[J]. Fuel, 2017, 203: 725-738. |
30 | Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Mathematical modelling of mixed salt precipitation during convective heat transfer and sub-cooled flow boiling[J]. Chemical Engineering Science, 2005, 60(18): 5078-5088. |
31 | He X Y, Zou Q S, Luo L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1): 115-136. |
[1] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[2] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[3] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[4] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[5] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[8] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[9] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
[10] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[11] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[12] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[13] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[14] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[15] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 757
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||