1 |
Kåresdotter E, Destouni G, Ghajarnia N, et al. Distinguishing direct human-driven effects on the global terrestrial water cycle[J]. Earth’s Future, 2022, 10(8): e2022EF002848.
|
2 |
Alvarez P J J, Chan C K, Elimelech M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13: 634-641.
|
3 |
Wang J L, Kong Y, Liu Z, et al. Solar-driven interfacial evaporation: design and application progress of structural evaporators and functional distillers[J]. Nano Energy, 2023, 108: 108115.
|
4 |
Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718.
|
5 |
Li Z T, Xu X T, Sheng X R, et al. Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus[J]. ACS Nano, 2021, 15(8): 12535-12566.
|
6 |
Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3: 1031-1041.
|
7 |
Wang Z, Horseman T, Straub A P, et al. Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 2019, 5(7): eaax0763.
|
8 |
Zhang L N, Xu Z Y, Bhatia B, et al. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills[J]. Applied Energy, 2020, 266: 114864.
|
9 |
Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5: 388-401.
|
10 |
Gao M M, Peh C K, Phan H T, et al. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Advanced Energy Materials, 2018, 8(25): 1800711.
|
11 |
Zhu L L, Gao M M, Peh C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Advanced Energy Materials, 2018, 8(16): 1702149.
|
12 |
Cui Y Y, Liu J, Li Z Q, et al. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation[J]. Advanced Functional Materials, 2021, 31(49): 2106247.
|
13 |
Wu G Z, Bing N C, Li Y F, et al. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion[J]. Energy Conversion and Management, 2022, 256: 115361.
|
14 |
Zhu L L, Ding T P, Gao M M, et al. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation[J]. Advanced Energy Materials, 2019, 9(22): 1900250.
|
15 |
Yang P H, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927.
|
16 |
Hu Y J, Yao H Z, Liao Q H, et al. The promising solar-powered water purification based on graphene functional architectures[J]. EcoMat, 2022, 4(5): e12205.
|
17 |
Li C X, Cao S J, Lutzki J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144(7): 3083-3090.
|
18 |
Li X Q, Xie W R, Zhu J. Interfacial solar steam/vapor generation for heating and cooling[J]. Advanced Science, 2022, 9(6): e2104181.
|
19 |
Huang J, He Y R, Hu Y W, et al. Coupled photothermal and joule-heating process for stable and efficient interfacial evaporation[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110156.
|
20 |
Chu Z, Liu Z, Li Z, et al. Hierarchical unidirectional fluidic solar-electro-thermal evaporator for all-day efficient water purification[J]. Materials Today Sustainability, 2022, 19: 100223.
|
21 |
马佳香. 太阳能光电联合蒸发用于高效海水淡化的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
Ma J X. Solar evaporator based on photo-electro-thermal for efficient seawater desalination[D].Harbin: Harbin Institute of Technology, 2019.
|
22 |
Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4): 1701028.
|
23 |
Chala T F, Wu C M, Chou M H, et al. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28955-28962.
|
24 |
Jiang Q S, Tian L M, Liu K K, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28(42): 9400-9407.
|
25 |
Zhou X Y, Zhao F, Guo Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992.
|
26 |
Yang T, Lin H, Lin K T, et al. Carbon-based absorbers for solar evaporation: steam generation and beyond[J]. Sustainable Materials and Technologies, 2020, 25: e00182.
|
27 |
Wang M, Hou Y Q, Yu L J, et al. Anomalies of ionic/molecular transport in nano and sub-nano confinement[J]. Nano Letters, 2020, 20(10): 6937-6946.
|
28 |
Kim H, Jeon D Y, Jang S G, et al. Synergetic effect of BN for the electrical conductivity of CNT/PAN composite fiber[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3103-3107.
|
29 |
Tan X, Cheng Y, Wang S L. Design of interface-stable Janus solar-energy evaporator[J]. International Journal of Thermal Sciences, 2022, 179: 107712.
|
30 |
Liu X H, Liu Z C, Devadutta Mishra D, et al. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow[J]. Chemical Engineering Journal, 2022, 429: 132335.
|
31 |
Li X Q, Ni G, Cooper T, et al. Measuring conversion efficiency of solar vapor generation[J]. Joule, 2019, 3(8): 1798-1803.
|
32 |
Cao P, Zhao L M, Zhang J, et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19109-19116.
|
33 |
Lin Z X, Wu T T, Jia B X, et al. Nature-inspired poly(N-phenylglycine)/wood solar evaporation system for high-efficiency desalination and water purification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128272.
|
34 |
Zhang X Y, Peng Y J, Shi L Y, et al. Highly efficient solar evaporator based on a hydrophobic association hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18114-18125.
|
35 |
Ma X L, Jia X D, Yao G C, et al. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater[J]. Cell Reports Physical Science, 2022, 3(7): 100940.
|
36 |
Kuang Y D, Chen C J, He S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): e1900498.
|
37 |
Fang Q L, Li T T, Chen Z M, et al. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10672-10679.
|
38 |
Zhang L J, Wang X C, Xu X H, et al. A Janus solar evaporator with photocatalysis and salt resistance for water purification[J]. Separation and Purification Technology, 2022, 298: 121643.
|
39 |
Tariq M Z, Hanif Z, Kim B, et al. Solvent-free fabrication of photothermal polypyrrole-coated sulfur particles for solar steam generation[J]. Applied Surface Science, 2023, 612: 155815.
|
40 |
Li T T, Fang Q L, Wang J Q, et al. Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays[J]. Journal of Materials Chemistry A, 2021, 9(1): 390-399.
|
41 |
Sun Z Z, Li W Z, Song W L, et al. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of Materials Chemistry A, 2020, 8(1): 349-357.
|