CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1355-1369.DOI: 10.11949/0438-1157.20231204
• Reviews and monographs • Previous Articles Next Articles
Kaixuan LIU(), Qinyuan JIANG(), Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG()
Received:
2023-11-21
Revised:
2024-01-03
Online:
2024-06-06
Published:
2024-04-25
Contact:
Rufan ZHANG
刘恺轩(), 姜沁源(), 汪菲, 李润, 朱平, 王康康, 臧永路, 赵彦龙, 张如范()
通讯作者:
张如范
作者简介:
刘恺轩(2000—),男,硕士研究生,liukaixu23@mails.tsinghua.edu.cn基金资助:
CLC Number:
Kaixuan LIU, Qinyuan JIANG, Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG. Controlled synthesis of high-density ultralong carbon nanotubes: progress and prospects[J]. CIESC Journal, 2024, 75(4): 1355-1369.
刘恺轩, 姜沁源, 汪菲, 李润, 朱平, 王康康, 臧永路, 赵彦龙, 张如范. 高密度超长碳纳米管的可控制备:进展与展望[J]. 化工学报, 2024, 75(4): 1355-1369.
Add to citation manager EndNote|Ris|BibTeX
48 | Ding L, Zhou W W, Chu H B, et al. Direct preparation and patterning of iron oxide nanoparticles via microcontact printing on silicon wafers for the growth of single-walled carbon nanotubes[J]. Chemistry of Materials, 2006, 18(17): 4109-4114. |
49 | Li B, Cao X H, Huang X, et al. Facile “needle-scratching” method for fast catalyst patterns used for large-scale growth of densely aligned single-walled carbon-nanotube arrays[J]. Small, 2009, 5(18): 2061-2065. |
50 | Huang L M, White B, Sfeir M Y, et al. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11103-11109. |
51 | Zhang R F, Xie H H, Zhang Y Y, et al. The reason for the low density of horizontally aligned ultralong carbon nanotube arrays[J]. Carbon, 2013, 52: 232-238. |
52 | Cui R L, Zhang Y, Wang J Y, et al. Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15547-15552. |
53 | An J N, Zhan Z Y, Hari Krishna S V, et al. Growth condition mediated catalyst effects on the density and length of horizontally aligned single-walled carbon nanotube arrays[J]. Chemical Engineering Journal, 2014, 237: 16-22. |
54 | Xie H H, Zhang R F, Zhang Y Y, et al. Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres[J]. Carbon, 2013, 52: 535-540. |
55 | Xie H H, Zhang R F, Zhang Y Y, et al. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes[J]. Chemical Communications, 2014, 50(76): 11158-11161. |
56 | Xie H H, Zhang R F, Zhang Y Y, et al. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays[J]. Carbon, 2016, 98: 157-161. |
57 | Zhang Q, Zhou W Y, Xia X G, et al. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique[J]. Advanced Materials, 2020, 32(39): e2004277. |
58 | Zhou T, Niu Y T, Li Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021, 203: 109557. |
59 | Mikhalchan A, Fan Z, Tran T Q, et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016, 102: 409-418. |
60 | Hou P X, Zhang F, Zhang L L, et al. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications[J]. Advanced Functional Materials, 2022, 32(11): 2108541. |
61 | Nasibulin A G, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films[J]. ACS Nano, 2011, 5(4): 3214-3221. |
62 | Bai Y X, Zhang R F, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nature Nanotechnology, 2018, 13: 589-595. |
63 | Bai Y X, Yue H J, Wang J, et al. Super-durable ultralong carbon nanotubes[J]. Science, 2020, 369(6507): 1104-1106. |
64 | Wei N, Liu Y, Xie H H, et al. Carbon nanotube light sensors with linear dynamic range of over 120 dB[J]. Applied Physics Letters, 2014, 105(7): 073107. |
65 | Wang H D, Liu J H, Guo Z Y, et al. Thermal transport across the interface between a suspended single-walled carbon nanotube and air[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(4): 349-365. |
66 | Franklin A D. Nanomaterials in transistors: from high-performance to thin-film applications[J]. Science, 2015, 349(6249): aab2750. |
67 | Franklin A D. The road to carbon nanotube transistors[J]. Nature, 2013, 498: 443-444. |
68 | Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424: 654-657. |
69 | Tang J S, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nature Electronics, 2018, 1: 191-196. |
70 | Ghosh S, Bachilo S M, Weisman R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[J]. Nature Nanotechnology, 2010, 5: 443-450. |
71 | Hu Y, Chen Y B, Li P, et al. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution[J]. Small, 2013, 9(8): 1306-1311. |
1 | Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. |
2 | Zhang R F, Wen Q, Qian W Z, et al. Superstrong ultralong carbon nanotubes for mechanical energy storage[J]. Advanced Materials, 2011, 23(30): 3387-3391. |
3 | Bai Y X, Yue H J, Zhang R F, et al. Mechanical behavior of single and bundled defect-free carbon nanotubes[J]. Accounts of Materials Research, 2021, 2(11): 998-1009. |
4 | Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters, 2004, 4(1): 35-39. |
5 | Peng L M, Zhang Z Y, Wang S. Carbon nanotube electronics: recent advances[J]. Materials Today, 2014, 17(9): 433-442. |
6 | Anantram M P, Léonard F. Physics of carbon nanotube electronic devices[J]. Reports on Progress in Physics, 2006, 69(3): 507-561. |
7 | Javey A, Guo J, Farmer D B, et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics[J]. Nano Letters, 2004, 4(3): 447-450. |
8 | Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes[J]. Physical Review B, 1999, 59(4): R2514-R2516. |
9 | Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616. |
10 | Yang L J, Wang S, Zeng Q S, et al. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236. |
11 | Araujo P T, Doorn S K, Kilina S, et al. Third and fourth optical transitions in semiconducting carbon nanotubes[J]. Physical Review Letters, 2007, 98(6): 067401. |
12 | Liu L J, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856. |
13 | Shulaker M M, Hills G, Park R S, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547: 74-78. |
14 | Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569): 884-886. |
15 | Bai Y X, Shen B Y, Zhang S L, et al. Storage of mechanical energy based on carbon nanotubes with high energy density and power density[J]. Advanced Materials, 2019, 31(9): e1800680. |
16 | Zhang Y M, Liu D X, Huang Q Y, et al. Mixed-dimensional van der Waals engineering for charge transfer enables wafer-level flexible electronics[J]. Advanced Functional Materials, 2022, 32(36): 2205111. |
17 | Hussain A, Liao Y P, Zhang Q, et al. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes[J]. Nanoscale, 2018, 10(20): 9752-9759. |
18 | Fu C, Sheng Z Z, Zhang X T. Laminated structural engineering strategy toward carbon nanotube-based aerogel films[J]. ACS Nano, 2022, 16(6): 9378-9388. |
19 | Wang J N, Luo X G, Wu T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity[J]. Nature Communications, 2014, 5: 3848. |
20 | Wang Y, Wei F, Luo G H, et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J]. Chemical Physics Letters, 2002, 364(5/6): 568-572. |
21 | Hata K J, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. |
22 | Li J H, Liu K H, Liang S B, et al. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity[J]. ACS Nano, 2014, 8(1): 554-562. |
23 | Zhang R F, Zhang Y Y, Wei F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties[J]. Accounts of Chemical Research, 2017, 50(2): 179-189. |
24 | Wei F, Zhang Q, Qian W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1): 10-20. |
25 | Yang X S, Yuan L X, Peterson V K, et al. Open-ended aligned carbon nanotube arrays produced using CO2-assisted floating-ferrocene chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14093-14097. |
72 | Tu X M, Hight Walker A R, Khripin C Y, et al. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes[J]. Journal of the American Chemical Society, 2011, 133(33): 12998-13001. |
73 | Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers[J]. Nature Nanotechnology, 2007, 2: 640-646. |
74 | Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nature Nanotechnology, 2013, 8: 180-186. |
75 | Yao J, Li Y J, Li Y H, et al. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors[J]. Carbon, 2021, 184: 764-771. |
76 | Wang H M, Li S, Wang Y L, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor[J]. Advanced Materials, 2020, 32(11): e1908214. |
77 | Choi J, Kim J. Batch-processed carbon nanotube wall as pressure and flow sensor[J]. Nanotechnology, 2010, 21(10): 105502. |
78 | Li R, Jiang Q Y, Wang F, et al. Fast in-situ optical visualization of carbon nanotubes assisted by smoke[J]. Small Methods, 2022, 6(1): e2101333. |
79 | Zhu Z X, Wei N, Xie H H, et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors[J]. Science Advances, 2016, 2(11): e1601572. |
26 | Hu Y, Kang L X, Zhao Q C, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts[J]. Nature Communications, 2015, 6: 6099. |
27 | Kang L X, Zhang S C, Li Q W, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. Journal of the American Chemical Society, 2016, 138(21): 6727-6730. |
28 | Ding L, Tselev A, Wang J Y, et al. Selective growth of well-aligned semiconducting single-walled carbon nanotubes[J]. Nano Letters, 2009, 9(2): 800-805. |
29 | Chen Y B, Hu Y, Fang Y, et al. Lattice-directed growth of single-walled carbon nanotubes with controlled geometries on surface[J]. Carbon, 2012, 50(9): 3295-3297. |
30 | Huang S M, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “Fast-heating” chemical vapor deposition process[J]. Nano Letters, 2004, 4(6): 1025-1028. |
31 | Jin Z, Chu H B, Wang J Y, et al. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays[J]. Nano Letters, 2007, 7(7): 2073-2079. |
32 | Wen Q, Zhang R F, Qian W Z, et al. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80—90 μm/s[J]. Chemistry of Materials, 2010, 22(4): 1294-1296. |
33 | Gao J, Zhu Z X, Shen B Y, et al. Bandgap-coupled template autocatalysis toward the growth of high-purity sp2 nanocarbons[J]. Advanced Science, 2021, 8(7): 2003078. |
34 | Zhu Z X, Wei N, Cheng W J, et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays[J]. Nature Communications, 2019, 10: 4467. |
35 | Liu Y, Hong J X, Zhang Y, et al. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow[J]. Nanotechnology, 2009, 20(18): 185601. |
36 | Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745. |
37 | Zhang R F, Zhang Y Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. |
38 | Jiang Q Y, Wang F, Li R, et al. The inherent thermal effect of substrates on the growth of ultralong carbon nanotubes[J]. Advanced Functional Materials, 2023, 33(10): 2212665. |
39 | Jiang Q Y, Wang F, Li R, et al. Synthesis of ultralong carbon nanotubes with ultrahigh yields[J]. Nano Letters, 2023, 23(2): 523-532. |
40 | Jiang Q Y, Li R, Wang F, et al. Ultrasensitive airflow sensors based on suspended carbon nanotube networks[J]. Advanced Materials, 2022, 34(18): e2107062. |
41 | Zheng L X, O'Connell M J, Doorn S K, et al. Ultralong single-wall carbon nanotubes[J]. Nature Materials, 2004, 3: 673-676. |
42 | Peng B H, Yao Y G, Zhang J. Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultralong single-walled carbon nanotubes[J]. The Journal of Physical Chemistry C, 2010, 114(30): 12960-12965. |
43 | Wang X S, Li Q Q, Xie J, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates[J]. Nano Letters, 2009, 9(9): 3137-3141. |
44 | Satō T. Spectral emissivity of silicon[J]. Japanese Journal of Applied Physics, 1967, 6(3): 339. |
45 | Zhang R F, Zhang Y Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161. |
46 | McCarthy D E. Transmittance of optical materials from 0.17 μm to 3.0 μm [J]. Applied Optics, 1967, 6(11): 1896-1898. |
47 | Inoue T, Hasegawa D, Badar S, et al. Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates[J]. The Journal of Physical Chemistry C, 2013, 117(22): 11804-11810. |
[1] |
,LIU Liming,LI Yin,CHEN Jian.
Optimization of fermentation process for achieving high product concentration,high yield and high productivity [J]. , 2006, 25(10): 1128-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||