CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1370-1381.DOI: 10.11949/0438-1157.20231381
• Reviews and monographs • Previous Articles Next Articles
Yiru WEN1(), Jia FU1, Dahuan LIU1,2()
Received:
2023-12-27
Revised:
2024-01-31
Online:
2024-06-06
Published:
2024-04-25
Contact:
Dahuan LIU
通讯作者:
刘大欢
作者简介:
文一如(1999—),女,硕士研究生,18810335112@163.com
CLC Number:
Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation[J]. CIESC Journal, 2024, 75(4): 1370-1381.
文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381.
Add to citation manager EndNote|Ris|BibTeX
1 | 刘增欣, 王依军, 郝春莲, 等. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553. |
Liu Z X, Wang Y J, Hao C L, et al. Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation[J]. CIESC Journal, 2021, 72(S1): 546-553. | |
2 | 裴仁花, 王永洪, 张新儒, 等. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
Pei R H, Wang Y H, Zhang X R, et al. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes[J]. CIESC Journal, 2022, 73(9): 3904-3914. | |
3 | 张后虎, 吴晓莉, 陈冲冲, 等. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550. |
Zhang H H, Wu X L, Chen C C, et al. Preparation of 2D lamellar CD-MOF membranes for accurate separation of mixed solvents[J]. CIESC Journal, 2022, 73(10): 4539-4550. | |
4 | 王毅, 熊启钊, 陈杨, 等. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780. |
Wang Y, Xiong Q Z, Chen Y, et al. Research on Zr-based metal-organic frameworks for NH3 adsorption[J]. CIESC Journal, 2022, 73(4): 1772-1780. | |
5 | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
Xi G J, Liu Z H, Lei G P. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC[J]. CIESC Journal, 2022, 73(9): 3940-3949. | |
6 | 张鑫琦, 张宸, 张舵咏, 等. 高选择性PEI@ MOF-808吸附剂在潮湿烟气中的碳捕集性能研究[J]. 化工学报, 2023, 74(10): 4330-4342. |
Zhang X Q, Zhang C, Zhang D Y, et al. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas[J]. CIESC Journal, 2023, 74(10): 4330-4342. | |
7 | 王磊, 蒋勇, 钟达忠, 等. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585. |
Wang L, Jiang Y, Zhong D Z, et al. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol[J]. CIESC Journal, 2022, 73(8): 3576-3585. | |
8 | Bernini M C, Fairen-Jimenez D, Pasinetti M, et al. Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations[J]. Journal of Materials Chemistry. B, 2014, 2(7): 766-774. |
9 | Campbell M G, Liu S F, Swager T M, et al. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks[J]. Journal of the American Chemical Society, 2015, 137(43): 13780-13783. |
10 | 王玉杰, 李申辉, 赵之平. M-MOF-74吸附分离H2/He混合物的分子模拟研究[J]. 化工学报, 2022, 73(10): 4507-4517. |
Wang Y J, Li S H, Zhao Z P. Molecular simulation study on adsorption and separation of H2/He mixtures by M-MOF-74[J]. CIESC Journal, 2022, 73(10): 4507-4517. | |
11 | 叶诗洋, 程敏, 吉旭, 等. 高性能COF材料的高通量筛选策略: 己烷异构体分离[J]. 化工学报, 2022, 73(11): 5138-5149. |
Ye S Y, Cheng M, Ji X, et al. High-throughput computational screening strategy for high-performance COF materials: separation of hexane isomers[J]. CIESC Journal, 2022, 73(11): 5138-5149. | |
12 | Yan Y L, Shi Z N, Li H L, et al. Machine learning and in-silico screening of metal-organic frameworks for O2/N2 dynamic adsorption and separation[J]. Chemical Engineering Journal, 2022, 427: 131604. |
13 | Hu J B, Suo X, Yang L F, et al. High-throughput computation evaluation of metal-organic frameworks for efficient perfluorocarbons recovery[J]. The Journal of Physical Chemistry C, 2024, 128(2): 941-948. |
14 | Gulbalkan H C, Uzun A, Keskin S. Evaluating CH4/N2 separation performances of hundreds of thousands of real and hypothetical MOFs by harnessing molecular modeling and machine learning[J]. ACS Applied Materials & Interfaces, 2024, 128(2): 941-948. |
15 | Shi Z N, Yang W Y, Deng X M, et al. Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks[J]. Molecular Systems Design & Engineering, 2020, 5(4): 725-742. |
16 | Yan Y L, Zhang L L, Li S H, et al. Adsorption behavior of metal-organic frameworks: from single simulation, high-throughput computational screening to machine learning[J]. Computational Materials Science, 2021, 193: 110383. |
17 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576: 253-256. |
18 | Chong S, Lee S, Kim B, et al. Applications of machine learning in metal-organic frameworks[J]. Coordination Chemistry Reviews, 2020, 423: 213487. |
19 | Fanourgakis G S, Gkagkas K, Tylianakis E, et al. A universal machine learning algorithm for large-scale screening of materials[J]. Journal of the American Chemical Society, 2020, 142(8): 3814-3822. |
20 | Moghadam P Z, Rogge S M J, Li A, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning[J]. Matter, 2019, 1(1): 219-234. |
21 | Zhang L L, Huang Q H, Li L F, et al. Automatic machine learning combined with high-throughput computational screening of hydrophobic metal-organic frameworks for capture of methanol and ethanol from the air[J]. ACS ES&T Engineering, 2024, 4(1): 115-127. |
22 | Tsamardinos I, Fanourgakis G S, Greasidou E, et al. An automated machine learning architecture for the accelerated prediction of metal-organic frameworks performance in energy and environmental applications[J]. Microporous and Mesoporous Materials, 2020, 300: 110160. |
23 | Fernandez M, Trefiak N R, Woo T K. Atomic property weighted radial distribution functions descriptors of metal-organic frameworks for the prediction of gas uptake capacity[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14095-14105. |
24 | Jablonka K M, Ongari D, Moosavi S M, et al. Big-data science in porous materials: materials genomics and machine learning[J]. Chemical Reviews, 2020, 120(16): 8066-8129. |
25 | Altintas C, Altundal O F, Keskin S, et al. Machine learning meets with metal organic frameworks for gas storage and separation[J]. Journal of Chemical Information and Modeling, 2021, 61(5): 2131-2146. |
26 | Borboudakis G, Stergiannakos T, Frysali M, et al. Chemically intuited, large-scale screening of MOFs by machine learning techniques[J]. NPJ Computational Materials, 2017, 3: 40. |
27 | Alpaydin E. Introduction to Machine Learning[M]. MIT Press, 2020. |
28 | Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Science, 2018, 4(2): 268-276. |
29 | Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials[J]. NPJ Computational Materials, 2016, 2: 16028. |
30 | Butler K T, Frost J M, Skelton J M, et al. Computational materials design of crystalline solids[J]. Chemical Society Reviews, 2016, 45(22): 6138-6146. |
31 | Wang H S, Ji Y J, Li Y Y. Simulation and design of energy materials accelerated by machine learning[J]. WIREs Computational Molecular Science, 2020, 10(1): e1421. |
32 | Bénard P, Chahine R. Storage of hydrogen by physisorption on carbon and nanostructured materials[J]. Scripta Materialia, 2007, 56(10): 803-808. |
33 | Pardakhti M, Moharreri E, Wanik D, et al. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)[J]. ACS Combinatorial Science, 2017, 19(10): 640-645. |
34 | Bucior B J, Bobbitt N S, Islamoglu T, et al. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks[J]. Molecular Systems Design & Engineering, 2019, 4(1): 162-174. |
35 | Yuan X Y, Li L F, Shi Z N, et al. Molecular-fingerprint machine-learning-assisted design and prediction for high-performance MOFs for capture of NMHCs from air[J]. Advanced Powder Materials, 2022, 1(3): 100026. |
36 | Lee Y J, Barthel S D, Dłotko P, et al. Quantifying similarity of pore-geometry in nanoporous materials[J]. Nature Communications, 2017, 8: 15396. |
37 | Shekhar S, Chowdhury C. Topological data analysis enhanced prediction of hydrogen storage in metal-organic frameworks (MOFs)[J]. Materials Advances, 2024, 5(2): 820-830. |
38 | Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. |
39 | Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559: 547-555. |
40 | 任嘉辉, 刘豫, 刘朝, 等. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
Ren J H, Liu Y, Liu C, et al. Critical temperature prediction of working fluids using molecular fingerprints and topological indices[J]. CIESC Journal, 2022, 73(4): 1493-1500. | |
41 | Orhan I B, Daglar H, Keskin S, et al. Prediction of O2/N2 selectivity in metal-organic frameworks via high-throughput computational screening and machine learning[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 736-749. |
42 | Moosavi S M, Chidambaram A, Talirz L, et al. Capturing chemical intuition in synthesis of metal-organic frameworks[J]. Nature Communications, 2019, 10: 539. |
43 | Yan T A, Bi Z Y, Liu D H, et al. A self-evolutionary methodology for reverse design of novel MOFs[J]. The Journal of Physical Chemistry. A, 2022, 126(45): 8476-8486. |
44 | de Luna P, Wei J, Bengio Y, et al. Use machine learning to find energy materials[J]. Nature, 2017, 552: 23-27. |
45 | Yang P S, Zhang H, Lai X, et al. Accelerating the selection of covalent organic frameworks with automated machine learning[J]. ACS Omega, 2021, 6(27): 17149-17161. |
46 | Gülsoy Z, Sezginel K B, Uzun A, et al. Analysis of CH4 uptake over metal-organic frameworks using data-mining tools[J]. ACS Combinatorial Science, 2019, 21(4): 257-268. |
47 | Wang Z H, Zhou Y G, Zhou T, et al. Identification of optimal metal-organic frameworks by machine learning: structure decomposition, feature integration, and predictive modeling[J]. Computers & Chemical Engineering, 2022, 160: 107739. |
48 | Fanourgakis G S, Gkagkas K, Tylianakis E, et al. Fast screening of large databases for top performing nanomaterials using a self-consistent, machine learning based approach[J]. The Journal of Physical Chemistry C, 2020, 124(36): 19639-19648. |
49 | Liang H, Yang W Y, Peng F, et al. Combining large-scale screening and machine learning to predict the metal-organic frameworks for organosulfurs removal from high-sour natural gas[J]. APL Materials, 2019, 7(9): 091101. |
50 | Luo Y, Bag S, Zaremba O, et al. MOF synthesis prediction enabled by automatic data mining and machine learning[J]. Angewandte Chemie (International Ed. in English), 2022, 61(19): e202200242. |
51 | Zheng Z L, Zhang O F, Nguyen H L, et al. ChatGPT research group for optimizing the crystallinity of MOFs and COFs[J]. ACS Central Science, 2023, 9(11): 2161-2170. |
52 | Moghadam P Z, Fairen-Jimenez D, Snurr R Q. Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals[J]. Journal of Materials Chemistry A, 2016, 4(2): 529-536. |
53 | Deng F, Qin X Z, Chai K G, et al. Adsorption and removal of industrial dyes by water-stabilized aluminum-based metal-organic frameworks[J]. ACS Applied Nano Materials, 2023, 6(10): 8675-8684. |
54 | Batra R, Chen C, Evans T G, et al. Prediction of water stability of metal-organic frameworks using machine learning[J]. Nature Machine Intelligence, 2020, 2: 704-710. |
55 | Loughran Ryan P, Tara H, Andrzej G, et al. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework[J]. Cell Reports Physical Science, 2023, 4(7): 101470. |
56 | Burtch N C, Jasuja H, Walton K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
57 | Qadir N U, Said S A, Bahaidarah H M. Structural stability of metal organic frameworks in aqueous media—controlling factors and methods to improve hydrostability and hydrothermal cyclic stability[J]. Microporous and Mesoporous Materials, 2015, 201: 61-90. |
58 | Ge Z W, Feng S, Ma C C, et al. Quantifying and comparing the effects of key chemical descriptors on metal-organic frameworks water stability with CatBoost and SHAP[J]. Microchemical Journal, 2024, 196: 109625. |
59 | Tsamardinos I, Charonyktakis P, Papoutsoglou G, et al. Just Add Data: automated predictive modeling for knowledge discovery and feature selection[J]. NPJ Precision Oncology, 2022, 6: 38. |
60 | Xia W, Yang Y S, Sheng L Z, et al. Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework[J]. Science Advances, 2024, 10(3): eadj6473. |
61 | Xiong X H, Song L, Wang W, et al. Capture fluorocarbon and chlorofluorocarbon from air using DUT-67 for safety and semi-quantitative analysis[J]. Advanced Science, 2024: e2308123. |
62 | Xiong G Z, Zhang J, Lin B, et al. A stable paddle-wheel Co-MOF (FNU-2) for the efficient separation of light hydrocarbons[J]. Microporous and Mesoporous Materials, 2024, 366: 112970. |
63 | Zhao D, Yu K L, Han X, et al. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption[J]. Chemical Communications, 2022, 58(6): 747-770. |
64 | Zhang L, Song L, Meng L L, et al. Anionic Ni-based metal-organic framework with Li(Ⅰ) cations in the pores for efficient C2H2/CO2 separation[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 847-852. |
65 | Suyetin M. The application of machine learning for predicting the methane uptake and working capacity of MOFs[J]. Faraday Discussions, 2021, 231: 224-234. |
66 | Lee S, Kim B, Cho H, et al. Computational screening of trillions of metal-organic frameworks for high-performance methane storage[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23647-23654. |
67 | 赖欣, 卢罡, 王磊, 等. 基于ANN的新型MOFs性能预测[J]. 计算机系统应用, 2021, 30(9): 1-11. |
Lai X, Lu G, Wang L, et al. ANN-based prediction about performance of novel MOFs[J]. Computer Systems & Applications, 2021, 30(9): 1-11. | |
68 | Glasby L T, Moghadam P Z. Hydrogen storage in MOFs: machine learning for finding a needle in a haystack[J]. Patterns, 2021, 2(7): 100305. |
69 | García-Holley P, Schweitzer B, Islamoglu T, et al. Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions[J]. ACS Energy Letters, 2018, 3(3): 748-754. |
70 | Zhang X, Lin R B, Wang J, et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity[J]. Advanced Materials, 2020, 32(17): e1907995. |
71 | Ahmed A, Siegel D J. Predicting hydrogen storage in MOFs via machine learning[J]. Patterns, 2021, 2(7): 100291. |
72 | Goldsmith J, Wong-Foy A G, Cafarella M J, et al. Theoretical limits of hydrogen storage in metal-organic frameworks: opportunities and trade-offs[J]. Chemistry of Materials, 2013, 25(16): 3373-3382. |
73 | Ahmed A, Liu Y Y, Purewal J, et al. Balancing gravimetric and volumetric hydrogen density in MOFs[J]. Energy & Environmental Science, 2017, 10(11): 2459-2471. |
74 | Gómez-Gualdrón D A, Wang T C, García-Holley P, et al. Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33419-33428. |
75 | Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. |
76 | Shekhar S, Chowdhury C. Prediction of hydrogen storage in metal-organic frameworks: a neural network based approach[J]. Results in Surfaces and Interfaces, 2024, 14: 100166. |
77 | Zhang X, Zhang X, Johnson J A, et al. Highly porous zirconium metal-organic frameworks with β-UH3-like topology based on elongated tetrahedral linkers[J]. Journal of the American Chemical Society, 2016, 138(27): 8380-8383. |
78 | Wang T, Lin E, Peng Y L, et al. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coordination Chemistry Reviews, 2020, 423: 213485. |
79 | Shi Y S, Xie Y, Cui H, et al. Highly selective adsorption of carbon dioxide over acetylene in an ultramicroporous metal-organic framework[J]. Advanced Materials, 2021, 33(45): e2105880. |
80 | 蔡铖智, 李丽凤, 邓小梅, 等. 基于机器学习和高通量计算筛选金属有机框架的甲烷/乙烷/丙烷分离性能[J]. 化学学报, 2020, 78(5): 427-436. |
Cai C Z, Li L F, Deng X M, et al. Machine learning and high-throughput computational screening of metal-organic framework for separation of methane/ethane/propane[J]. Acta Chimica Sinica, 2020, 78(5): 427-436. | |
81 | Yang L F, Qian S H, Wang X B, et al. Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
82 | Adil K, Belmabkhout Y, Pillai R S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46(11): 3402-3430. |
83 | Halder P, Singh J K. High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique[J]. Energy & Fuels, 2020, 34(11): 14591-14597. |
[1] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[2] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[3] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[4] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[5] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[6] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[7] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[8] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[9] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[10] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[11] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[12] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[13] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[14] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[15] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||