CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3348-3359.DOI: 10.11949/0438-1157.20240329
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Liping ZHANG1(), Xiaorong MENG1,2(
), Jinfeng SONG3, Jinjing DU4
Received:
2024-03-21
Revised:
2024-04-20
Online:
2024-10-10
Published:
2024-09-25
Contact:
Xiaorong MENG
通讯作者:
孟晓荣
作者简介:
张丽萍(2000—),女,硕士研究生,zhangliping0108@163.com
基金资助:
CLC Number:
Liping ZHANG, Xiaorong MENG, Jinfeng SONG, Jinjing DU. Preparation of VO2@KH550/570@PS composite film and its thermally induced phase change properties[J]. CIESC Journal, 2024, 75(9): 3348-3359.
张丽萍, 孟晓荣, 宋锦峰, 杜金晶. VO2@KH550/570@PS复合薄膜的制备及其热致相变性能[J]. 化工学报, 2024, 75(9): 3348-3359.
Fig.5 SEM images of VSPS powder: (a) VO2, (b) VS550PS, (c) VS570PS, (g) VS550, (h) VS570, (i) VO2@PS; water contact angle of modified powder: (d) VO2, (e)VS550PS, (f) VS570PS, (j) VS550, (k) VS570, (l) VO2@PS
Fig. 10 Thermochromic properties of composite films: (a),(b) different VSPS composite films; (c) VL transmittance full IR rejection of composite film under different VS570PS dosage; (d) transmittance spectra of composite films with different amounts of VSPS
Sample | Tlum/% | A-Tlum/% | Tsol/% | ΔTsol/% | ||
---|---|---|---|---|---|---|
20℃ | 90℃ | 20℃ | 90℃ | |||
VO2/PVB | 57.60 | 59.65 | 58.63 | 57.28 | 56.94 | 0.34 |
VS550PS/PVB | 81.35 | 83.03 | 82.19 | 80.73 | 78.84 | 1.89 |
VS570PS/PVB | 84.87 | 88.42 | 86.64 | 84.80 | 80.46 | 4.34 |
VS570PS/PVDF | 68.07 | 70.66 | 69.36 | 70.58 | 69.15 | 1.43 |
VS570PS/PVC | 85.84 | 84.97 | 85.41 | 86.00 | 83.79 | 2.21 |
Table 1 Tlum and Tsol of VO2/PVB and VSPS polymer composite films, (where A is average transmittance of high and low temperature visible light)
Sample | Tlum/% | A-Tlum/% | Tsol/% | ΔTsol/% | ||
---|---|---|---|---|---|---|
20℃ | 90℃ | 20℃ | 90℃ | |||
VO2/PVB | 57.60 | 59.65 | 58.63 | 57.28 | 56.94 | 0.34 |
VS550PS/PVB | 81.35 | 83.03 | 82.19 | 80.73 | 78.84 | 1.89 |
VS570PS/PVB | 84.87 | 88.42 | 86.64 | 84.80 | 80.46 | 4.34 |
VS570PS/PVDF | 68.07 | 70.66 | 69.36 | 70.58 | 69.15 | 1.43 |
VS570PS/PVC | 85.84 | 84.97 | 85.41 | 86.00 | 83.79 | 2.21 |
Sample | K1 (0—180 s) | K2 (210—380 s) | K3 (410—600 s) |
---|---|---|---|
blank glass | 0.607 | 0.159 | 0.0760 |
VO2/PVB | 0.552 | 0.153 | 0.0710 |
VS550PS/PVB | 0.357 | 0.139 | 0.0610 |
VS570PS/PVB | 0.335 | 0.149 | 0.0630 |
VS570PS/PVC | 0.428 | 0.147 | 0.0670 |
VS570PS/PVDF | 0.450 | 0.096 | 0.0610 |
Table 2 Heating rate K of VSPS composite film
Sample | K1 (0—180 s) | K2 (210—380 s) | K3 (410—600 s) |
---|---|---|---|
blank glass | 0.607 | 0.159 | 0.0760 |
VO2/PVB | 0.552 | 0.153 | 0.0710 |
VS550PS/PVB | 0.357 | 0.139 | 0.0610 |
VS570PS/PVB | 0.335 | 0.149 | 0.0630 |
VS570PS/PVC | 0.428 | 0.147 | 0.0670 |
VS570PS/PVDF | 0.450 | 0.096 | 0.0610 |
1 | Pachano J E, Fernández-Vigil Iglesias M, Saiz J C, et al. Two-stage multi-step energy model calibration of the cooling systems of a large-space commercial building[J]. Applied Thermal Engineering, 2023, 230: 120638. |
2 | Sirvent P, Perez G, Guerrero A. VO2 sprayed cementitious materials for thermochromic building envelopes[J]. Solar Energy, 2022, 243: 13-21. |
3 | Zhao Y, Ji H N, Lu M Y, et al. Thermochromic smart windows assisted by photothermal nanomaterials[J]. Nanomaterials, 2022, 12(21): 3865. |
4 | Chen G Q, Zhang Y T, Chen Y M, et al. Energy efficient thermochromic smart windows based on polymers and metal oxides[J]. Journal of Polymer Science, 2024, 62(2): 229-240. |
5 | Feng Y Q, Lv M L, Yang M, et al. Application of new energy thermochromic composite thermosensitive materials of smart windows in recent years[J]. Molecules, 2022, 27(5): 1638. |
6 | Lee D, Chung B, Shi Y, et al. Isostructural metal-insulator transition in VO2 [J]. Science, 2018, 362(6418): 1037-1040. |
7 | Raveendran S V, Unni A K A, Mohanan J. Photocatalytic dye degradation, self-cleaning, and chromogenic properties of VO2 thin films for eco-friendly smart window application[J]. Applied Nanoscience, 2023, 13(3): 1841-1854. |
8 | Kayani Z N, Iqbal A, Bashir Z, et al. Effect of K contents on the efficiency of K-doped TiO2 thin films for smart window applications[J]. Inorganic Chemistry Communications, 2023, 151: 110560. |
9 | Dang Y Y, Zhao L R, Liu J C. Preparation and optical properties of W-doped VO2/AZO bilayer composite film[J]. Ceramics International, 2020, 46(7): 9079-9085. |
10 | Basso M, Colusso E, Carraro C, et al. Rapid laser-induced low temperature crystallization of thermochromic VO2 sol-gel thin films[J]. Applied Surface Science, 2023, 631: 157507. |
11 | Rajeswaran B, Pradhan J K, Ramakrishna S A, et al. Annealing enhanced phase transition in VO2 thin films deposited on glass substrates via chemical vapor deposition[J]. Thin Solid Films, 2023, 778: 139918. |
12 | Bleu Y, Bourquard F, Barnier V, et al. Towards room temperature phase transition of W-doped VO2 thin films deposited by pulsed laser deposition: thermochromic, surface, and structural analysis[J]. Materials, 2023, 16(1): 461. |
13 | Li J G, An Z W, Zhang W L, et al. Thermochromatic vanadium dioxide (VO2) thin films synthesized by atomic layer deposition and post-treatments[J]. Applied Surface Science, 2020, 529: 147108. |
14 | Xygkis M, Gagaoudakis E, Zouridi L, et al. Thermochromic behavior of VO2/polymer nanocomposites for energy saving coatings[J]. Coatings, 2019, 9(3): 163. |
15 | Huang X J, Zeng X F, Wang J X, et al. Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4253-4260. |
16 | Haruna M A, Wen D S. Stabilization of polymer nanocomposites in high-temperature and high-salinity brines[J]. ACS Omega, 2019, 4(7): 11631-11641. |
17 | Ji H N, Liu D Q, Zhang C Y, et al. VO2/ZnS core-shell nanoparticle for the adaptive infrared camouflage application with modified color and enhanced oxidation resistance[J]. Solar Energy Materials and Solar Cells, 2018, 176: 1-8. |
18 | Chiozzi V, Rossi F. Inorganic–organic core/shell nanoparticles: progress and applications[J]. Nanoscale Advances, 2020, 2(11): 5090-5105. |
19 | Du Z Y, Li M, Zou F X, et al. VO2@SiO2 nanoparticle-based films with localized surface plasmon resonance for smart windows[J]. ACS Applied Nano Materials, 2022, 5(9): 12972-12979. |
20 | Salamati M, Kamyabjou G, Mohamadi M, et al. Preparation of TiO2@W-VO2 thermochromic thin film for the application of energy efficient smart windows and energy modeling studies of the produced glass[J]. Construction and Building Materials, 2019, 218: 477-482. |
21 | Chen Y X, Zeng X Z, Zhu J T, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27784-27791. |
22 | Zhao S W, Tao Y, Chen Y X, et al. Room-temperature synthesis of inorganic-organic hybrid coated VO2 nanoparticles for enhanced durability and flexible temperature-responsive near-infrared modulator application[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10254-10261. |
23 | Tong K, Li R, Zhu J T, et al. Preparation of VO2/Al-O core-shell structure with enhanced weathering resistance for smart window[J]. Ceramics International, 2017, 43(5): 4055-4061. |
24 | Li R, Ji S D, Li Y M, et al. Synthesis and characterization of plate-like VO2(M)@SiO2 nanoparticles and their application to smart window[J]. Materials Letters, 2013, 110: 241-244. |
25 | Saini M, Dehiya B S, Umar A. VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications[J]. Ceramics International, 2020, 46(1): 986-995. |
26 | Zhu Z Z, Zhu K Z, Guo J H, et al. Preparation and durability evaluation of vanadium dioxide intelligent thermal insulation films[J]. Colloid and Interface Science Communications, 2022, 48: 100619. |
27 | 赵立英, 刘长生. 硅烷偶联剂对聚甲基丙烯酸甲酯/二氧化硅纳米复合材料结构与性能的影响[J]. 化工学报, 2005, 56(11): 2223-2227. |
Zhao L Y, Liu C S. Influence of silane coupler on structure and properties of PMMA/SiO2 nanocomposites materials[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(11): 2223-2227. | |
28 | 呼啸, 李文婷, 付勍玮, 等. VO2@PMMA微胶囊的原位制备及其热致变色涂层性能[J]. 复合材料学报, 2023, 40(8): 4587-4600. |
Hu X, Li W T, Fu Q W, et al. In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4587-4600. | |
29 | Zhao X X, Sun J H, Ma J C, et al. Combining reversible addition-fragmentation chain transfer polymerization and thiol-ene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window[J]. Sustainable Materials and Technologies, 2022, 32: e00420. |
30 | 张少鸿, 付娟, 苏秋成, 等. 超细VO2粉末的制备及其可逆相变的原位表征[J]. 稀有金属材料与工程, 2015, 44(3): 738-742. |
Zhang S H, Fu J, Su Q C, et al. Preparation of VO2 superfine powders by a redox method and in situ characterization on the reversible phase transition[J]. Rare Metal Materials and Engineering, 2015, 44(3): 738-742. | |
31 | Zhao X X, Sun J H, Guo Z Y, et al. One-step hydrothermal synthesis of monoclinic vanadium dioxide nanoparticles with low phase transition temperature[J]. Chemical Engineering Journal, 2022, 446: 137308. |
32 | Fan S J, Fan L L, Li Q, et al. The identification of defect structures for oxygen pressure dependent VO2 crystal films[J]. Applied Surface Science, 2014, 321: 464-468. |
33 | Chen W, Luan J D, Yu X K, et al. Preparation of core-shell structured polystyrene @ graphene oxide composite microspheres with high adsorption capacity and its removal of dye contaminants[J]. Environmental Technology, 2021, 42(24): 3840-3851. |
34 | Domenichelli I, Banerjee S, Taddei S, et al. Styrene and substituted styrene grafted functional polyolefins via nitroxide mediated polymerization[J]. Polymer Chemistry, 2018, 9(3): 307-314. |
35 | Jijie R, Barras A, Teslaru T, et al. Aqueous medium-induced micropore formation in plasma polymerized polystyrene: an effective route to inhibit bacteria adhesion[J]. Journal of Materials Chemistry B, 2018, 6(22): 3674-3683. |
36 | Le P T P, Hofhuis K, Rana A, et al. Tailoring vanadium dioxide film orientation using nanosheets: a combined microscopy, diffraction, transport, and soft X-ray in transmission study[J]. Advanced Functional Materials, 2020, 30(1): 1900028. |
37 | Wang X, Li M, Wang Q S, et al. Effect of Mie scattering on thermochromic performance of branched VO2 prepared by one-step hydrothermal method[J]. European Journal of Inorganic Chemistry, 2020, 2020(18): 1783-1789. |
[1] | ZHUANG Meiling, LIU Tianqing, SONG Kedong, WANG Shuping. Preparation and characterization of novel thermo-responsivehollow fiber membranes [J]. CIESC Journal, 2016, 67(11): 4866-4872. |
[2] | DONG Rulin,LIU Shuyun,CHEN Zhidong,JIN Changchun,WANG Caixia. Preparation of TiO2/SiO2 composite film and its self-cleaning properties [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 645-651. |
[3] | GUO Hongyu, CUI Jieming, SUN Delin, ZHOU Jian. Dissipative particle dynamics simulation on phase behavior of thermo-responsive amphiphilic copolymer PCL-PNIPAM-PCL [J]. CIESC Journal, 2012, 63(11): 3707-3715. |
[4] | WANG Zhenyu1,2,WANG Huiyou1. Preparation of edible composite film of Radix platycodonis polysaccharide by response surface analysis [J]. , 2010, 29(2): 297-. |
[5] | SHEN Jiangnan,QIU Junhong,ZHENG Xingcun,WU Liguang,GAO Congjie. Research progress of microemulsion polymerization in preparation of separation membranes [J]. , 2008, 27(4): 515-. |
[6] | YANG Wenchuan,CHU Liangyin,PANG Xueqin,JU Xiaojie. Preparation and characterization of magnetic and thermo-responsive microcapsule membranes [J]. , 2008, 27(1): 120-. |
[7] |
CHU Liangyin, ZHU Jiahua, CHEN Wenmei, NIITSUMA Takuya, YAMAGUCHI Takeo, NAKAO Shin-ichi.
Effect of Graft Yield on the Thermo-Responsive Permeability Through Porous Membranes with Plasma-Grafted Poly (N-isopropylacrylamide) Gates [J]. , 2003, 11(3): 269-275. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||
Abstract 157
|
|
|||||||||||||||||||||||||||||||||