CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 394-404.DOI: 10.11949/0438-1157.20240710
• Process safety • Previous Articles Next Articles
Fan LI1,3(), Yanjun YIN2(
), Junchao XU1, Liqiao JIANG3, Xiaohan WANG3, Huaqiang CHU1(
)
Received:
2024-06-25
Revised:
2024-08-18
Online:
2025-02-08
Published:
2025-01-25
Contact:
Yanjun YIN, Huaqiang CHU
李凡1,3(), 尹艳君2(
), 徐俊超1, 蒋利桥3, 汪小憨3, 楚化强1(
)
通讯作者:
尹艳君,楚化强
作者简介:
李凡(1992—),男,博士,讲师,ah_lifan@163.com
基金资助:
CLC Number:
Fan LI, Yanjun YIN, Junchao XU, Liqiao JIANG, Xiaohan WANG, Huaqiang CHU. Enhancing the flame stability in a flat plate burner using catalytic coating of CeO2-ZrO2[J]. CIESC Journal, 2025, 76(1): 394-404.
李凡, 尹艳君, 徐俊超, 蒋利桥, 汪小憨, 楚化强. 催化涂层CeO2-ZrO2提高平板式燃烧器火焰稳定性研究[J]. 化工学报, 2025, 76(1): 394-404.
涂层壁面材料 | 涂层厚度/μm | 表面粗糙度 算术平均值/μm | 材料热导率(25℃)/ (W/(m·℃)) | 材料热导率 (1000℃)/(W/(m·℃)) | 热膨胀系数(25~1000℃)/(10-6℃-1) | 材料密度/(kg/m3) |
---|---|---|---|---|---|---|
STS304 | — | 1.80 | 14 | 25 | 17.30 | 7.93×103 |
CeO2-ZrO2 | 300 | 2.10 | 2.83 | 2.36 | 9.86 | 6.11×103 |
Table 1 Physical parameters of different types of wall materials
涂层壁面材料 | 涂层厚度/μm | 表面粗糙度 算术平均值/μm | 材料热导率(25℃)/ (W/(m·℃)) | 材料热导率 (1000℃)/(W/(m·℃)) | 热膨胀系数(25~1000℃)/(10-6℃-1) | 材料密度/(kg/m3) |
---|---|---|---|---|---|---|
STS304 | — | 1.80 | 14 | 25 | 17.30 | 7.93×103 |
CeO2-ZrO2 | 300 | 2.10 | 2.83 | 2.36 | 9.86 | 6.11×103 |
1 | Ju Y G, Maruta K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6): 669-715. |
2 | Dreizler A, Böhm B. Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions[J]. Proceedings of the Combustion Institute, 2015, 35(1): 37-64. |
3 | Wan J L, Fan A W. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems[J]. Fuel, 2021, 286: 119391. |
4 | Qian P, Liu M H. Influencing factors of wall temperature and flame stability of micro-combustors in micro-thermophotovoltaic and micro-thermoelectric systems[J]. Fuel, 2022, 310: 122436. |
5 | 王业峰, 周俊虎, 赵庆辰, 等. 甲烷与正丁烷微小尺度催化燃烧性能比较[J]. 化工学报, 2017, 68(3): 896-902. |
Wang Y F, Zhou J H, Zhao QC, et al. Comparison of catalytic combustion of methane and n-butane in microtube[J]. CIESC Journal, 2017, 68(3): 896-902. | |
6 | 杨宵, 丁锐, 李墨含, 等. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
Yang X, Ding R, Li M H, et al. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel[J]. CIESC Journal, 2022, 73(12): 5427-5437. | |
7 | Kohse-Höinghaus K. Combustion, chemistry, and carbon neutrality[J]. Chemical Reviews, 2023, 123(8): 5139-5219. |
8 | 隋然. 催化燃烧过程中的气相火焰[J]. 工程热物理学报, 2024, 45(5): 1534-1547. |
Sui R. Gas-phase flames during catalytic combustion[J]. Journal of Engineering Thermophysics, 2024, 45(5): 1534-1547. | |
9 | 康涛, 朱权. TiN涂层及其抑制结焦性能的研究[J]. 化学研究与应用, 2021, 33(11): 2247-2252. |
Kang T, Zhu Q. Investigation of TiN coating and its anti-coking performance[J]. Chemical Research and Application, 2021, 33(11): 2247-2252. | |
10 | Ma T Y, Chen D W, Wang H, et al. Influence of thermal barrier coating on partially premixed combustion in internal combustion engine[J]. Fuel, 2021, 303(1): 121259. |
11 | Li F, Yang H L, Wang X H, et al. Effects of doping ceria on flame quenching in a narrow channel with zirconia-based functional coatings[J]. Chemical Engineering Journal, 2022, 446: 137216. |
12 | 刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学, 2018, 11(4): 531-549. |
Liu J R, Hu Z Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. | |
13 | Fan Y, Guo J Q, Lee M, et al. Quantitative evaluation of wall chemical effect in hydrogen flame using two-photon absorption LIF[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2361-2370. |
14 | 蒋新生, 余彬彬, 徐建楠, 等. 基于OH-PLIF的狭长受限空间油气爆炸中间基团浓度分布研究[J]. 化工学报, 2020, 71(11): 5352-5360. |
Jiang X S, Yu B B, Xu J N, et al. Study on concentration distribution of radical groups of gasoline-air explosion in long-narrow confined space based on OH-PLIF[J]. CIESC Journal, 2020, 71(11): 5352-5360. | |
15 | Kobayashi H, Seyama K, Hagiwara H, et al. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature[J]. Proceedings of the Combustion Institute, 2005, 30(1): 827-834. |
16 | Kim K T, Lee D H, Kwon S. Effects of thermal and chemical surface-flame interaction on flame quenching[J]. Combustion and Flame, 2006, 146(1/2): 19-28. |
17 | Sanchez-Sanz M, Fernandez-Galisteo D, Kurdyumov V N. Effect of the equivalence ratio, Damköhler number, Lewis number and heat release on the stability of laminar premixed flames in microchannels[J]. Combustion and Flame, 2014, 161(5): 1282-1293. |
18 | Westbrook C K, Adamczyk A A, Lavoie G A. A numerical study of laminar flame wall quenching[J]. Combustion and Flame, 1981, 40: 81-99. |
19 | 费兆阳, 李磊, 成超, 等. 铈锆复合氧化物催化HCl氧化中相互作用机制[J]. 化工学报, 2018, 69(12): 5081-5089. |
Fei Z Y, Li L, Cheng C, et al. Interaction between CeO2 and ZrO2 in HCl catalytic oxidation[J]. CIESC Journal, 2018, 69(12): 5081-5089. | |
20 | Yang Z Z, Zhang N, Xu H D, et al. Boosting diesel soot catalytic combustion via enhancement of solid (catalyst)-solid (soot) contact by tailoring micrometer scaled sheet-type agglomerations of CeO2-ZrO2 catalyst[J]. Combustion and Flame, 2022, 235: 111700. |
21 | Li F, Yang H L, Deng R J, et al. OH-PLIF study on the mechanism regulating flame-wall interaction with catalytically active CeO2-ZrO2 coatings[J]. Combustion and Flame, 2023, 255: 112917. |
22 | Yang H L, Feng Y X, Wu Y Y, et al. A surface analysis-based investigation of the effect of wall materials on flame quenching[J]. Combustion Science and Technology, 2011, 183(5): 444-458. |
23 | Fan Y, Suzuki Y, Kasagi N. Ultra-thin quartz combustors for TPV power generator[C]//Proceedings Power MEMS. IEEE, 2008: 433-436. |
24 | Li F, Yang H L, Zeng X J, et al. Enhancing the flame stability in a slot burner using yttrium-doped zirconia coating[J]. Fuel, 2020, 262: 116502. |
25 | Yuasa S, Oshimi K, Nose H, et al. Concept and combustion characteristics of ultra-micro combustors with premixed flame[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2455-2462. |
26 | Saiki Y, Fan Y, Suzuki Y. Radical quenching of metal wall surface in a methane-air premixed flame[J]. Combustion and Flame, 2015, 162(10): 4036-4045. |
27 | Yamamoto K, Ozeki M, Hayashi N, et al. Burning velocity and OH concentration in premixed combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1227-1235. |
28 | Miesse C, Masel R, Short M, et al. Experimental observations of methane-oxygen diffusion flame structure in a sub-millimetre microburner[J]. Combustion Theory and Modelling, 2005, 9(1): 77-92. |
29 | Zhu J J, van Ommen J G, Knoester A, et al. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas[J]. Journal of Catalysis, 2005, 230(2): 291-300. |
30 | Prakash S, Glumac N G, Shankar N, et al. OH concentration profiles over alumina, quartz, and platinum surfaces using laser-induced fluorescence spectroscopy in low-pressure hydrogen/oxygen flames[J]. Combustion Science and Technology, 2005, 177(4): 793-817. |
31 | Pfefferle W C, Pfefferle L D. Catalytically stabilized combustion[J]. Progress in Energy and Combustion Science, 1986, 12(1): 25-41. |
32 | Fan Y, Lin W R, Wan S, et al. Investigation of wall chemical effect using PLIF measurement of OH radical generated by pulsed electric discharge[J]. Combustion and Flame, 2018, 196: 255-264. |
[1] | Fan LI, Aolin JIANG, Haolin YANG, Xiaojun ZENG, Liqiao JIANG, Xiaohan WANG. Study on enhancing flame stability using zirconia-based coating walls [J]. CIESC Journal, 2021, 72(11): 5883-5892. |
[2] | Hang ZHANG,Wei ZHANG,Weifeng LI,Haifeng LIU,Fuchen WANG. Characteristics of flow, mixing and interfacial reaction in T-jet reactor [J]. CIESC Journal, 2021, 72(10): 5064-5073. |
[3] | Fengling YANG, Cuixun ZHANG, Meiting LI. Experimental study on mixing characteristics of flexible-blade Rushton impeller [J]. CIESC Journal, 2020, 71(2): 626-632. |
[4] | LIU Hailong, CAO Yu, DING Xuechong, MAO Baodong, WANG Yuerou, WANG Junfeng. Mixing enhancement technique for laminar flow in stirred tank [J]. CIESC Journal, 2018, 69(12): 5042-5048. |
[5] | DU Kejiang, LI Weifeng, SHAN Zhihao, LIU Haifeng, WANG Fuchen. Mixing characteristics and enhancement of excitation in mini confined impinging jets reactor [J]. CIESC Journal, 2015, 66(7): 2395-2401. |
[6] | LUO Peicheng, WU Jun, XIN Chuanxian, JIA Haiyan. Jet trajectories of liquid mixing in multi-orifice-impinging transverse jet mixer [J]. CIESC Journal, 2014, 65(7): 2733-2740. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||