CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 951-962.DOI: 10.11949/0438-1157.20240886
• Reviews and monographs • Previous Articles Next Articles
Guipei XU1(), Qian SUN2,3,4, Jiewen LAI1, Yifeng LU1, Huifang DI2,3, Hui HUANG1, Zhenbing WANG2,3(
)
Received:
2024-08-03
Revised:
2024-09-18
Online:
2025-03-28
Published:
2025-03-25
Contact:
Zhenbing WANG
徐桂培1(), 孙倩2,3,4, 赖洁文1, 卢毅锋1, 邸会芳2,3, 黄辉1, 王振兵2,3(
)
通讯作者:
王振兵
作者简介:
徐桂培(1985—),男,高级工程师,413536165@qq.com
基金资助:
CLC Number:
Guipei XU, Qian SUN, Jiewen LAI, Yifeng LU, Huifang DI, Hui HUANG, Zhenbing WANG. Research progress on failure mechanism of electrochemical double layer capacitors[J]. CIESC Journal, 2025, 76(3): 951-962.
徐桂培, 孙倩, 赖洁文, 卢毅锋, 邸会芳, 黄辉, 王振兵. 电化学双电层电容器失效机理的研究进展[J]. 化工学报, 2025, 76(3): 951-962.
Fig.3 Schematic diagrams of the device for the gas chromatography-mass spectrometry cell[(a),(b)]; Total ion chromatograms (TICs) of the aged electrolyte at the positive (c) and negative (d) electrode[55]
失效部件 | 失效机理 |
---|---|
炭电极 | 表面官能团氧化还原分解 |
电极内吸附水发生氧化还原分解 | |
表面官能团和杂质与电解液作用发生副反应 | |
电解液 | 溶剂发生水解、聚合等副反应 |
电解质离子发生水解、霍夫曼消除等副反应 | |
集流体 | 副产物(如HF等)腐蚀集流体 |
Table 1 Summary of key components and corresponding failure mechanisms in EDLC
失效部件 | 失效机理 |
---|---|
炭电极 | 表面官能团氧化还原分解 |
电极内吸附水发生氧化还原分解 | |
表面官能团和杂质与电解液作用发生副反应 | |
电解液 | 溶剂发生水解、聚合等副反应 |
电解质离子发生水解、霍夫曼消除等副反应 | |
集流体 | 副产物(如HF等)腐蚀集流体 |
1 | Zhang C Y, Yang Y, Liu X, et al. Mobile energy storage technologies for boosting carbon neutrality[J]. The Innovation, 2023, 4(6): 100518. |
2 | Zhong C, Deng Y D, Hu W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
3 | Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. |
4 | Ji H X, Zhao X, Qiao Z H, et al. Capacitance of carbon-based electrical double-layer capacitors[J]. Nature Communications, 2014, 5: 3317. |
5 | 左飞龙, 陈照荣, 傅冠生, 等. 超级电容器用有机电解液的研究进展[J]. 电池, 2015, 45(2): 112-115. |
Zuo F L, Chen Z R, Fu G S, et al. Research progress in organic electrolytes for supercapacitor[J]. Battery Bimonthly, 2015, 45(2): 112-115. | |
6 | Ruther R E, Sun C N, Holliday A, et al. Stable electrolyte for high voltage electrochemical double-layer capacitors[J]. Journal of the Electrochemical Society, 2016, 164(2): A277-A283. |
7 | Köps L, Kreth F A, Bothe A, et al. High voltage electrochemical capacitors operating at elevated temperature based on 1,1-dimethylpyrrolidinium tetrafluoroborate[J]. Energy Storage Materials, 2022, 44: 66-72. |
8 | Han J, Yoshimoto N, Todorov Y M, et al. Characteristics of the electric double-layer capacitors using organic electrolyte solutions containing different alkylammonium cations[J]. Electrochimica Acta, 2018, 281: 510-516. |
9 | Sun Q, Yi Z L, Fan Y F, et al. Whole landscape of the origin and evolution of gassing in supercapacitors at a high voltage[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 54386-54396. |
10 | Liu S, Wei L, Wang H, et al. Review on reliability of supercapacitors in energy storage applications[J]. Applied Energy, 2020, 278: 115436. |
11 | Burke A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50. |
12 | Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
13 | Pal B, Yang S Y, Ramesh S, et al. Electrolyte selection for supercapacitive devices: a critical review[J]. Nanoscale Advances, 2019, 1(10): 3807-3835. |
14 | Zhao J Y, Burke A F. Review on supercapacitors: Technologies and performance evaluation[J]. Journal of Energy Chemistry, 2021, 59: 276-291. |
15 | Chaari R, Briat O, Delétage J Y, et al. How supercapacitors reach end of life criteria during calendar life and power cycling tests[J]. Microelectronics Reliability, 2011, 51(9/10/11): 1976-1979. |
16 | Weingarth D, Foelske-Schmitz A, Kötz R. Cycle versus voltage hold-Which is the better stability test for electrochemical double layer capacitors?[J]. Journal of Power Sources, 2013, 225: 84-88. |
17 | Rizoug N, Bartholomeus P, Le Moigne P. Study of the ageing process of a supercapacitor module using direct method of characterization[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 220-228. |
18 | Ratajczak P, Jurewicz K, Skowron P, et al. Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte[J]. Electrochimica Acta, 2014, 130: 344-350. |
19 | Platek A, Piwek J, Fic K, et al. Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes[J]. Electrochimica Acta, 2019, 311: 211-220. |
20 | Hahn M, Würsig A, Gallay R, et al. Gas evolution in activated carbon/propylene carbonate based double-layer capacitors[J]. Electrochemistry Communications, 2005, 7(9): 925-930. |
21 | Bondue C J, Abd-El-Latif A A, Hegemann P, et al. Quantitative study for oxygen reduction and evolution in aprotic organic electrolytes at gas diffusion electrodes by DEMS[J]. Journal of the Electrochemical Society, 2015, 162(3): A479-A487. |
22 | Metzger M, Gasteiger H A. Diagnosing battery degradation via gas analysis[J]. Energy & Environmental Materials, 2022, 5(3): 688-692. |
23 | Kost R, Balducci A. Gas characterization- and mass spectrometry-tools for the analysis of aging in electrical double layer capacitors: state-of-the-art and future challenges[J]. ChemElectroChem, 2024, 11(18): e202400338. |
24 | Wang C, Frogley M D, Cinque G, et al. Deformation and failure mechanisms in graphene oxide paper using in situ nanomechanical tensile testing[J]. Carbon, 2013, 63: 471-477. |
25 | Prehal C, Weingarth D, Perre E, et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering[J]. Energy & Environmental Science, 2015, 8(6): 1725-1735. |
26 | Kurzweil P, Chwistek M. Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products[J]. Journal of Power Sources, 2008, 176(2): 555-567. |
27 | Manova D, Mändl S. In situ XRD measurements to explore phase formation in the near surface region[J]. Journal of Applied Physics, 2019, 126(20): 200901. |
28 | Liu L Y, Taberna P-L, Dunn B, et al. Future directions for electrochemical capacitors[J]. ACS Energy Letters, 2021, 6(12): 4311-4316. |
29 | Su X L, Ye J L, Zhu Y W. Advances in in-situ characterizations of electrode materials for better supercapacitors[J]. Journal of Energy Chemistry, 2021, 54: 242-253. |
30 | Kim J, Gerelt-Od B, Shin E, et al. State of health monitoring by gas generation patterns in commercial 18,650 lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 907: 115892. |
31 | Kim J, Kim E, Lee U, et al. Nondisruptive in situ Raman analysis for gas evolution in commercial supercapacitor cells[J]. Electrochimica Acta, 2016, 219: 447-452. |
32 | Wang Z F, Tang C, Sun Q, et al. Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon[J]. Journal of Energy Chemistry, 2023, 80: 120-127. |
33 | Arruda T M, Heon M, Presser V, et al. In situ tracking of the nanoscale expansion of porous carbon electrodes[J]. Energy & Environmental Science, 2013, 6(1): 225-231. |
34 | Black J M, Feng G, Fulvio P F, et al. Strain-based in situ study of anion and cation insertion into porous carbon electrodes with different pore sizes[J]. Advanced Energy Materials, 2014, 4(3): 1300683. |
35 | Wang S, Xu H B, Hao T T, et al. In situ XRD and operando spectra-electrochemical investigation of tetragonal WO3- x nanowire networks for electrochromic supercapacitors[J]. NPG Asia Materials, 2021, 13(1): 51. |
36 | Camci M T, Ulgut B, Kocabas C, et al. In situ XPS reveals voltage driven asymmetric ion movement of an ionic liquid through the pores of a multilayer graphene electrode[J]. The Journal of Physical Chemistry C, 2018, 122(22): 11883-11889. |
37 | Tsai W Y, Taberna P L, Simon P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons[J]. Journal of the American Chemical Society, 2014, 136(24): 8722-8728. |
38 | Yao M H, Wu P, Cheng S, et al. Investigation into the energy storage behaviour of layered α-V2O5 as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance[J]. Physical Chemistry Chemical Physics, 2017, 19(36): 24689-24695. |
39 | Escher I, Hahn M,. Ferrero G A, et al. A practical guide for using electrochemical dilatometry as operando tool in battery and supercapacitor research[J]. Energy Technology, 2022, 10(5): 2101120. |
40 | Kurzweil P, Schottenbauer J, Schell C. Past, present and future of electrochemical capacitors: pseudocapacitance, aging mechanisms and service life estimation[J]. Journal of Energy Storage, 2021, 35: 102311. |
41 | 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. |
Wang Q Y, Wang S, Zhou G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. | |
42 | Huang Y L, Zhao Y, Gong Q M, et al. Experimental and correlative analyses of the ageing mechanism of activated carbon based supercapacitor[J]. Electrochimica Acta, 2017, 228: 214-225. |
43 | Huang Y L, Weng M Y, Gong Q M, et al. Degeneration of key structural components resulting in ageing of supercapacitors and the related chemical ageing mechanism[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39379-39393. |
44 | Zhu M, Weber C J, Yang Y, et al. Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes[J]. Carbon, 2008, 46(14): 1829-1840. |
45 | Ruch P W, Cericola D, Foelske A, et al. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages[J]. Electrochimica Acta, 2010, 55(7): 2352-2357. |
46 | Bittner A M, Zhu M, Yang Y, et al. Ageing of electrochemical double layer capacitors[J]. Journal of Power Sources, 2012, 203: 262-273. |
47 | Beguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14): 2219-2251. |
48 | Yan R Y, Antonietti M, Oschatz M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors[J]. Advanced Energy Materials, 2018, 8(18): 1800026. |
49 | Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources, 2006, 158(1): 765-772. |
50 | Ratajczak P, Suss M E, Kaasik F, et al. Carbon electrodes for capacitive technologies[J]. Energy Storage Materials, 2019, 16: 126-145. |
51 | Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon, 2005, 43(6): 1303-1310. |
52 | Deschamps M, Gilbert E, Azais P, et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR[J]. Nature Materials, 2013, 12(4): 351-358. |
53 | Lin R Y, Taberna P-L, Fantini S, et al. Capacitive energy storage from -50 to 100℃ using an ionic liquid electrolyte[J]. The Journal of Physical Chemistry Letters, 2011, 2(19): 2396-2401. |
54 | Ruch P W, Cericola D, Foelske-Schmitz A, et al. Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages[J]. Electrochimica Acta, 2010, 55(15): 4412-4420. |
55 | Kreth F A, Hess L H, Balducci A. In-operando GC-MS: a new tool for the understanding of degradation processes occurring in electrochemical capacitors[J]. Energy Storage Materials, 2023, 56: 192-204. |
56 | Kötz R, Hahn M, Ruch P, et al. Comparison of pressure evolution in supercapacitor devices using different aprotic solvents[J]. Electrochemistry Communications, 2008, 10(3): 359-362. |
57 | Azaïs P, Duclaux L, Florian P, et al. Causes of supercapacitors ageing in organic electrolyte[J]. Journal of Power Sources, 2007, 171(2): 1046-1053. |
58 | Hahn M, Kötz R, Gallay R, et al. Pressure evolution in propylene carbonate based electrochemical double layer capacitors[J]. Electrochimica Acta, 2006, 52(4): 1709-1712. |
59 | Ishimoto S, Asakawa Y, Shinya M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156(7): A563-A571. |
60 | Munteshari O, Borenstein A, DeBlock R H, et al. In operando calorimetric measurements for activated carbon electrodes in ionic liquid electrolytes under large potential windows[J]. ChemSusChem, 2020, 13(5): 1013-1026. |
61 | Hess L H, Bothe A, Balducci A. Design and use of a novel in situ simultaneous thermal analysis cell for an accurate "real time" monitoring of the heat and weight changes occurring in electrochemical capacitors[J]. Energy Technology, 2021, 9(9): 2100329. |
62 | Liu C F, Liu Y C, Yi T, et al. Carbon materials for high-voltage supercapacitors[J]. Carbon, 2019, 145: 529-548. |
63 | Chiba K, Ueda T, Yamaguchi Y, et al. Electrolyte systems for high withstand voltage and durability (Ⅰ). Linear sulfones for electric double-layer capacitors[J]. Journal of the Electrochemical Society, 2011, 158(8): A872-A882. |
64 | Köps L, Kreth F A, Leistenschneider D, et al. Improving the stability of supercapacitors at high voltages and high temperatures by the implementation of ethyl isopropyl sulfone as electrolyte solvent[J]. Advanced Energy Materials, 2023, 13(5): 2203821. |
65 | Pourhosseini S E M, Bothe A, Balducci A, et al. Strategy to assess the carbon electrode modifications associated with the high voltage ageing of electrochemical capacitors in organic electrolyte[J]. Energy Storage Materials, 2021, 38: 17-29. |
66 | He M L, Fic K, Fŗckowiak E, et al. Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis[J]. Energy & Environmental Science, 2016, 9(2): 623-633. |
67 | Lamiel C, Hussain I, Ma X X, et al. Properties, functions, and challenges: current collectors[J]. Materials Today Chemistry, 2022, 26: 101152. |
68 | Krämer E, Schedlbauer T, Hoffmann B, et al. Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2012, 160(2): A356-A360. |
69 | Holleman A F, Wiberg N, Wiberg E. Lehrbuch der Anorganischen Chemie[M]. 102nd ed. Berlin, Boston: De Gruyter, 2008: 1156. |
70 | Wu H, Song Z Y, Wang X X, et al. N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes[J]. Nano Research, 2023, 16(6): 8269-8280. |
71 | Heckmann A, Krott M, Streipert B, et al. Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance[J]. ChemPhysChem, 2017, 18(1): 156-163. |
72 | Krummacher J, Balducci A. Al(TFSI)3 as a conducting salt for high-voltage electrochemical double-layer capacitors[J]. Chemistry of Materials, 2018, 30(14): 4857-4863. |
73 | Yoon E, Lee J, Byun S, et al. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(22): 2200026. |
74 | Chandra Sekhar B, Hachicha R, Maffre M, et al. Evaluation of the properties of an electrolyte based on formamide and LiTFSI for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2020, 167(11): 110508. |
75 | Meister P, Qi X, Kloepsch R, et al. Anodic behavior of the aluminum current collector in imide-based electrolytes: influence of solvent, operating temperature, and native oxide-layer thickness[J]. ChemSusChem, 2017, 10(4): 804-814. |
[1] | Yunhao LI, Juncheng JIANG, Yuan YU, Zhirong WANG, Qingwu ZHANG. Coupling effects of perforation and heat radiation on failure mechanism of fixed-roof steel tank [J]. CIESC Journal, 2021, 72(8): 4433-4443. |
[2] | BIAN Weibai, PAN Jianming. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials [J]. CIESC Journal, 2021, 72(1): 304-319. |
[3] | ZHANG Jianwen, SU Guoqing, JIANG Aiguo. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit [J]. CIESC Journal, 2018, 69(8): 3537-3547. |
[4] | SHEN Kejun,PEI Junfeng,HE Chao,HUANG Xianru. Reciprocating pump hydraulic end failure mechanism based on blind source separation [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 611-616. |
[5] | WANG Xiaojuan, WU Beilei, MA Chun'an. Electrochemical oxidation characteristics of zinc O,O,O’,O’-tetrabutyl bis(phosphorodithioate)on glassy carbon electrode [J]. CIESC Journal, 2013, 64(7): 2550-2555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||