CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4433-4443.DOI: 10.11949/0438-1157.20201604
• Process safety • Previous Articles
Yunhao LI1(),Juncheng JIANG1,2(),Yuan YU2,Zhirong WANG2,Qingwu ZHANG2
Received:
2020-11-05
Revised:
2021-05-02
Online:
2021-08-05
Published:
2021-08-05
Contact:
Juncheng JIANG
通讯作者:
蒋军成
作者简介:
李云浩(1990—),男,博士,讲师,基金资助:
CLC Number:
Yunhao LI, Juncheng JIANG, Yuan YU, Zhirong WANG, Qingwu ZHANG. Coupling effects of perforation and heat radiation on failure mechanism of fixed-roof steel tank[J]. CIESC Journal, 2021, 72(8): 4433-4443.
李云浩, 蒋军成, 喻源, 王志荣, 张庆武. 穿孔与热辐射耦合作用下固定拱顶钢储罐的失效机理[J]. 化工学报, 2021, 72(8): 4433-4443.
Add to citation manager EndNote|Ris|BibTeX
钢板参数 | 底板 | 第一层 | 第二层 | 第三层 | 第四层 | 第五层 | 第六层 | 第七至九层 | 第十层 | 顶盖 |
---|---|---|---|---|---|---|---|---|---|---|
钢板厚度/mm | 10 | 13 | 12 | 11 | 10 | 9 | 7 | 6 | 6 | 5 |
钢板高度/m | — | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.8 | — |
Table 1 Structural dimensions of the 5000 m3 storage tank
钢板参数 | 底板 | 第一层 | 第二层 | 第三层 | 第四层 | 第五层 | 第六层 | 第七至九层 | 第十层 | 顶盖 |
---|---|---|---|---|---|---|---|---|---|---|
钢板厚度/mm | 10 | 13 | 12 | 11 | 10 | 9 | 7 | 6 | 6 | 5 |
钢板高度/m | — | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.8 | — |
A/MPa | B/MPa | C | n | m | Tmelt/℃ | Ttrans/℃ |
---|---|---|---|---|---|---|
374 | 795 | 0.01586 | 0.45451 | 0.88559 | 1500 | 20 |
Table 2 Johnson-Cook plasticity model parameters of the Q345 steel
A/MPa | B/MPa | C | n | m | Tmelt/℃ | Ttrans/℃ |
---|---|---|---|---|---|---|
374 | 795 | 0.01586 | 0.45451 | 0.88559 | 1500 | 20 |
d1 | d2 | d3 | d4 | d5 | Tmelt/℃ | Ttrans/℃ | |
---|---|---|---|---|---|---|---|
0.123 | 0.236 | 2.43 | 0.058 | 0 | 1500 | 20 | 1 |
Table 3 Johnson-Cook damage model parameters of the Q345 steel
d1 | d2 | d3 | d4 | d5 | Tmelt/℃ | Ttrans/℃ | |
---|---|---|---|---|---|---|---|
0.123 | 0.236 | 2.43 | 0.058 | 0 | 1500 | 20 | 1 |
Fig. 8 Radial displacement, circumferential and meridional stresses around the circumference of the target tank (z=14 m, 0°≤θ≤90°) at buckling and post-buckling states
Fig. 13 Radial displacement, circumferential and meridional stresses around the circumference of the perforated target tank (z=14 m, 0°≤θ≤90°) at buckling and post-buckling states
1 | Gubinelli G, Cozzani V. Assessment of missile hazards: identification of reference fragmentation patterns[J]. Journal of Hazardous Materials, 2009, 163(2/3): 1008-1018. |
2 | Tugnoli A, Milazzo M F, Landucci G, et al. Assessment of the hazard due to fragment projection: a case study[J]. Journal of Loss Prevention in the Process Industries, 2014, 28: 36-46. |
3 | Reniers G, Cozzani V. Domino Effects in the Process Industries[M]. Amsterdam: Elsevier, 2013: 116-153. |
4 | 黄维秋, 方洁, 吕成, 等. 内浮顶罐组油气泄漏扩散叠加效应的数值模拟与风洞实验研究[J]. 化工学报, 2019, 70(11): 4504-4516. |
Huang W Q, Fang J, Lyu C, et al. Numerical simulation of oil vapor leakage and diffusion superposition effect of internal floating-roof tank group and experimental investigation on wind-tunnel[J]. CIESC Journal, 2019, 70(11): 4504-4516. | |
5 | Schneider P, Buchar F, Zápeca F. Structural response to thin steel shell structures due to aircraft impact[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(4): 325-329. |
6 | Lecysyn N, Dandrieux A, Heymes F, et al. Preliminary study of ballistic impact on an industrial tank: projectile velocity decay[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6): 627-634. |
7 | Ren P, Zhou J Q, Tian A, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact[J]. International Journal of Impact Engineering, 2018, 117: 153-163. |
8 | 潘旭海, 徐进, 蒋军成, 等. 爆炸碎片撞击圆柱薄壁储罐的有限元模拟分析[J]. 南京工业大学学报(自然科学版), 2008, 30(3): 15-20. |
Pan X H, Xu J, Jiang J C, et al. Finite element simulation analysis on explosion debris impacting thin-wall cylindrical tanks[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008, 30(3): 15-20. | |
9 | 曹源, 金先龙, 李政. 冲击载荷下柔性储液罐动态响应数值模拟及规律分析[J]. 爆炸与冲击, 2011, 31(5): 469-474. |
Cao Y, Jin X L, Li Z. Dynamic analysis of flexible containers under impact[J]. Explosion and Shock Waves, 2011, 31(5): 469-474. | |
10 | 张涛, 方秦, 吴昊, 等. 商用客机撞击储油罐破坏效应的数值模拟[J]. 振动与冲击, 2015, 34(23): 18-24. |
Zhang T, Fang Q, Wu H, et al. Numerical simulation for damage effects of a fuel tank under commercial aircraft impact[J]. Journal of Vibration and Shock, 2015, 34(23): 18-24. | |
11 | 陈国华, 胡昆, 周池楼, 等. 尖头碎片撞击小尺寸储罐的模拟实验[J]. 爆炸与冲击, 2018, 38(6): 1295-1302. |
Chen G H, Hu K, Zhou C L, et al. Simulation experiment on small-size tank impacted by conical projectiles[J]. Explosion and Shock Waves, 2018, 38(6): 1295-1302. | |
12 | Salahshour S, Fallah F. Elastic collapse of thin long cylindrical shells under external pressure[J]. Thin-Walled Structures, 2018, 124: 81-87. |
13 | Liu Y. Thermal buckling of metal oil tanks subject to an adjacent fire[D]. Edinburgh: The University of Edinburgh, 2011. |
14 | Godoy L A, Batista-Abreu J C. Buckling of fixed-roof aboveground oil storage tanks under heat induced by an external fire[J]. Thin-Walled Structures, 2012, 52: 90-101. |
15 | Pantousa D, Godoy L A. On the mechanics of thermal buckling of oil storage tanks[J]. Thin-Walled Structures, 2019, 145: 106432. |
16 | 李玉, 徐春明, 韩帅, 等. 火灾条件下拱顶油罐弱连接结构的失效分析[J]. 化工学报, 2020, 71(7): 3372-3378. |
Li Y, Xu C M, Han S, et al. Failure analysis of weak connection structure of vaulted oil tank under fire condition[J]. CIESC Journal, 2020, 71(7): 3372-3378. | |
17 | Santos F D S, Landesmann A. Thermal performance-based analysis of minimum safe distances between fuel storage tanks exposed to fire[J]. Fire Safety Journal, 2014, 69: 57-68. |
18 | Pantousa D. Numerical study on thermal buckling of empty thin-walled steel tanks under multiple pool-fire scenarios[J]. Thin-Walled Structures, 2018, 131: 577-594. |
19 | Li Y H, Jiang J C, Zhang Q W, et al. Static and dynamic flame model effects on thermal buckling: fixed-roof tanks adjacent to an ethanol pool-fire[J]. Process Safety and Environmental Protection, 2019, 127: 23-35. |
20 | Quiel S E, Marjanishvili S M. Fire resistance of a damaged steel building frame designed to resist progressive collapse[J]. Journal of Performance of Constructed Facilities, 2012, 26(4): 402-409. |
21 | Yu W J, Zhao J C, Luo H X, et al. Experimental study on mechanical behavior of an impacted steel tubular T-joint in fire[J]. Journal of Constructional Steel Research, 2011, 67(9): 1376-1385. |
22 | Xi F, Li Q M, Tan Y H. Dynamic response and critical temperature of a steel beam subjected to fire and subsequent impulsive loading[J]. Computers & Structures, 2014, 135: 100-108. |
23 | Li Y H, Jiang J C, Bian H T, et al. Coupling effects of the fragment impact and adjacent pool-fire on the thermal buckling of a fixed-roof tank[J]. Thin-Walled Structures, 2019, 144: 106309. |
24 | 中华人民共和国住房和城乡建设部. 立式圆筒形钢制焊接油罐设计规范: [S]. 北京: 中国计划出版社, 2015. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of vertical cylindrical welded steel oil tanks: [S]. Beijing: China Planning Press, 2015. | |
25 | 胡可. 钢储罐结构爆炸冲击荷载与动力响应的数值模拟研究[D]. 杭州: 浙江大学, 2016. |
Hu K. Numerical simulation of explosion loading and dynamic response of steel tanks[D]. Hangzhou: Zhejiang University, 2016. | |
26 | Yang G D, Wang G H, Lu W B, et al. Numerical modeling of surface explosion effects on shallow-buried box culvert behavior during the water diversion[J]. Thin-Walled Structures, 2018, 133: 153-168. |
27 | 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013. |
Kong X S. Research on the blast loadings and the response of multi-layer protective structure[D]. Wuhan: WuhanUniversity of Technology, 2013. | |
28 | Yao S J, Zhang D, Lu Z J, et al. Experimental and numerical investigation on the dynamic response of steel chamber under internal blast[J]. Engineering Structures, 2018, 168: 877-888. |
29 | Mudan K S. Thermal radiation hazards from hydrocarbon pool fires[J]. Progress in Energy and Combustion Science, 1984, 10(1): 59-80. |
30 | Hurley M J, Gottuk D, Hall J R, et al. SFPE Handbook of Fire Protection Engineering[M]. New York: Springer, 2016. |
31 | Maynard T. Fire interactions and pulsation—theoretical and physical modeling[D]. Riverside: University of California, Riverside, 2013. |
32 | Muñoz M, Arnaldos J, Casal J, et al. Analysis of the geometric and radiative characteristics of hydrocarbon pool fires[J]. Combustion and Flame, 2004, 139(3): 263-277. |
33 | Zukoski E E, Cetegen B M, Kubota T. Visible structure of buoyant diffusion flames[J]. Symposium (International) on Combustion, 1985, 20(1): 361-366. |
34 | 周魁斌, 蒋军成, 张旭. 基于火焰脉动的池火灾辐射热流预测模型[J]. 南京工业大学学报(自然科学版), 2016, 38(4): 114-118. |
Zhou K B, Jiang J C, Zhang X. Flame pulsation-based model for predicting radiant heat flux of pool fire[J]. Journal of Nanjing Tech University (Natural Science Edition), 2016, 38(4): 114-118. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[13] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[14] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[15] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||