CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1661-1670.DOI: 10.11949/0438-1157.20241085

• Process system engineering • Previous Articles     Next Articles

Modeling of wastewater reverse osmosis process based on Alopex evolutionary algorithm and ensemble learning multi-model back propagation neural network

Yang ZHOU1(), Dan LIANG2, Kai WANG1(), Yilan ZHANG2, Li JIA1()   

  1. 1.Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
    2.Southwest Institute of Technical Physics, Chengdu 610041, Sichuan, China
  • Received:2024-09-27 Revised:2024-11-22 Online:2025-05-12 Published:2025-04-25
  • Contact: Kai WANG, Li JIA

基于Alopex进化算法和集成学习的多模态神经网络的污水反渗透过程建模

周洋1(), 梁聃2, 汪恺1(), 张艺蓝2, 贾立1()   

  1. 1.上海大学电机工程与自动化学院自动化系,上海 200444
    2.西南技术物理研究所,四川 成都 610041
  • 通讯作者: 汪恺,贾立
  • 作者简介:周洋 (1992—),女,博士,zhouyang0410@shu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(62303296);国家自然科学基金项目(61773251)

Abstract:

This paper proposes an AdaBoost strategy based on training quality and a multimodal neural network machine learning method based on Alopex evolutionary algorithm for the dynamic process of ultrafiltration performance in sewage reverse osmosis water pretreatment. Firstly, this paper constructs a class of generalized Bayesian inference probability indicators suitable for arbitrary distributions to classify multimodal states such as filtration and backwashing in ultrafiltration reverse osmosis wastewater treatment processes. Then, a neural network algorithm based on Alopex evolutionary algorithm and distribution-based AdaBoost ensemble strategy is used to model each modal process separately. Finally, the constructed generalized Bayesian inference-based probability indicators for each modality are used to integrate multiple models of the multimodal process. In order to verify the effectiveness of the method proposed in this paper, the method was applied to a two-year dataset collected from a community in the United States. The proposed method has good predictive performance for membrane resistance and backwash efficiency, and can effectively predict expected water quality changes.

Key words: ultrafiltration RO feed pre-treatment, backwash efficiency, hydraulic membrane resistance, back propagation neural network

摘要:

面向污水反渗透给水预处理中超滤性能动态过程,提出一种基于训练质量的AdaBoost策略和基于Alopex进化算法的多模态神经网络机器学习方法。首先,构建了一类适用于任意分布的广义贝叶斯推断概率指标对超滤反渗透污水处理过程中过滤和反洗等多模态状态进行分类,然后使用基于Alopex进化算法和基于分布的AdaBoost集成策略的神经网络算法针对每一个模态过程分别建模,最后利用构建的每个模态的基于广义贝叶斯推理的概率指标,将多模态的多个模型集成。为了验证所提方法的有效性,将该方法应用到美国某社区采集的两年数据集中,结果表明该方法对膜阻力和反洗效率具有很好的预测性能,能够很好地预测预期水质变化性能。

关键词: 超滤反渗透过程, 反冲洗效率, 水力膜阻力, 反向传播神经网络

CLC Number: