CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1671-1679.DOI: 10.11949/0438-1157.20241137
• Process system engineering • Previous Articles Next Articles
Hanxiao ZHANG(), Ruiqi WANG, Yating ZHANG(
)
Received:
2024-10-15
Revised:
2024-11-18
Online:
2025-05-12
Published:
2025-04-25
Contact:
Yating ZHANG
通讯作者:
张亚婷
作者简介:
张晗筱(1999—),女,硕士研究生,xbyJune@icloud.com
基金资助:
CLC Number:
Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network[J]. CIESC Journal, 2025, 76(4): 1671-1679.
张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679.
归一化方式 | R2 |
---|---|
[-2,2]归一化 | 0.90955 |
[-2,0]归一化 | 0.65239 |
[-1,0]归一化 | 0.73828 |
[-1,1]归一化 | 0.91915 |
[0,1]归一化 | 0.95739 |
[0,2]归一化 | 0.88683 |
不进行归一化 | 0.61451 |
Table 1 Normalized processing comparison
归一化方式 | R2 |
---|---|
[-2,2]归一化 | 0.90955 |
[-2,0]归一化 | 0.65239 |
[-1,0]归一化 | 0.73828 |
[-1,1]归一化 | 0.91915 |
[0,1]归一化 | 0.95739 |
[0,2]归一化 | 0.88683 |
不进行归一化 | 0.61451 |
评价指标 | 训练集 | 测试集 | 所有数据集 |
---|---|---|---|
R2 | 0.98441 | 0.98228 | 0.98167 |
MAE | 1.1246×10-2 | 3.7923×10-2 | — |
MAPE | 0.29784×10-3 | 3.1992×10-3 | — |
Table 2 The performance of the obtained neural network on the training set and the testing set
评价指标 | 训练集 | 测试集 | 所有数据集 |
---|---|---|---|
R2 | 0.98441 | 0.98228 | 0.98167 |
MAE | 1.1246×10-2 | 3.7923×10-2 | — |
MAPE | 0.29784×10-3 | 3.1992×10-3 | — |
单变量 | 训练集R2 | 测试集R2 | 所有数据集R2 |
---|---|---|---|
密度 | 0.92198 | 0.91917 | 0.92295 |
流体氧含量 | 0.92218 | 0.91054 | 0.91925 |
流体速度 | 0.9222 | 0.73436 | 0.84173 |
流体温度 | 0.9226 | 0.91167 | 0.91998 |
等效直径 | 0.92204 | 0.78172 | 0.86249 |
表面温度 | 0.93016 | 0.93329 | 0.93351 |
时间 | 0.93453 | 0.88835 | 0.91606 |
Table 3 Comparison of univariate prediction results
单变量 | 训练集R2 | 测试集R2 | 所有数据集R2 |
---|---|---|---|
密度 | 0.92198 | 0.91917 | 0.92295 |
流体氧含量 | 0.92218 | 0.91054 | 0.91925 |
流体速度 | 0.9222 | 0.73436 | 0.84173 |
流体温度 | 0.9226 | 0.91167 | 0.91998 |
等效直径 | 0.92204 | 0.78172 | 0.86249 |
表面温度 | 0.93016 | 0.93329 | 0.93351 |
时间 | 0.93453 | 0.88835 | 0.91606 |
模型 | R2 |
---|---|
MLPNN | 0.97782 |
CNN | 0.82476 |
LSTM | 0.65960 |
CNN-LSTM | 0.98167 |
Table 4 Prediction comparison between CNN-LSTM model and other models
模型 | R2 |
---|---|
MLPNN | 0.97782 |
CNN | 0.82476 |
LSTM | 0.65960 |
CNN-LSTM | 0.98167 |
1 | Muthukrishnan S, Krishnaswamy H, Thanikodi S, et al. Support vector machine for modelling and simulation of heat exchangers[J]. Thermal Science, 2020, 24(1 Part B): 499-503. |
2 | Sadeghianjahromi A, Wang C C. Heat transfer enhancement in fin-and-tube heat exchangers—a review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470. |
3 | 赵洪德, 刘继东, 周广启, 等. 换热器在石油化工行业中的应用及维护[J]. 造纸装备及材料, 2022, 51(3): 52-54. |
Zhao H D, Liu J D, Zhou G Q, et al. Application and maintenance of heat exchanger in petrochemical industry[J]. Papermaking Equipment & Materials, 2022, 51(3): 52-54. | |
4 | 田佳阳, 贾林权, 王彧斐, 等. 考虑关键换热器备用的原油预热系统清垢周期优化[J]. 化工学报, 2016, 67(12): 5183-5189. |
Tian J Y, Jia L Q, Wang Y F, et al. Schedule optimization for fouling removal in refinery heat exchanger networks with backup unit[J]. CIESC Journal, 2016, 67(12): 5183-5189. | |
5 | Tian J Y, Wang Y F, Feng X. Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks[J]. Energy, 2016, 109: 1118-1129. |
6 | Davoudi E, Vaferi B. Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers[J]. Chemical Engineering Research and Design, 2018, 130: 138-153. |
7 | 刘子奇, 赵轩, 王洋, 等. 热泵站换热器污垢研究[J]. 无线互联科技, 2018, 15(17): 69-70. |
Liu Z Q, Zhao X, Wang Y, et al. Research on heat exchanger fouling of heat pump station[J]. Wireless Internet Technology, 2018, 15(17): 69-70. | |
8 | Polley G T, Wilson D I, Yeap B L, et al. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains[J]. Applied Thermal Engineering, 2002, 22(7): 777-788. |
9 | Yeap B L, Wilson D I, Polley G T, et al. Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models[J]. Chemical Engineering Research and Design, 2004, 82(1): 53-71. |
10 | Łopata S, Ocłoń P. Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger[J]. Energy, 2015, 92: 100-116. |
11 | 徐源, 陶苗苗, 孙灵芳. 基于灰色神经网络的换热器污垢预测研究[J]. 吉林农业科技学院学报, 2014, 23(1): 45-48. |
Xu Y, Tao M M, Sun L F. Research on fouling prediction of heat exchanger based on grey theory and neural network[J]. Journal of Jilin Agricultural Science and Technology University, 2014, 23(1): 45-48. | |
12 | 余文敏, 余刃, 毛伟, 等. 基于SWLSTM的换热器在线性能预测[J]. 舰船科学技术, 2023, 45(21): 153-157. |
Yu W M, Yu R, Mao W, et al. On-line performance prediction of heat exchanger based on SWLSTM[J]. Ship Science and Technology, 2023, 45(21): 153-157. | |
13 | Mohanty D K, Singru P M. Fouling analysis of a shell and tube heat exchanger using local linear wavelet neural network[J]. International Journal of Heat and Mass Transfer, 2014, 77: 946-955. |
14 | 刘新, 伍俊楠, 潘殿琦, 等. 基于改进FMEA的污水厂设备故障风险评估模型[J]. 中国安全科学学报, 2024, 34(8): 101-107. |
Liu X, Wu J N, Pan D Q, et al. Equipment failure risk assessment model of wastewater treatment plant based on improved FMEA[J]. China Safety Science Journal, 2024, 34(8): 101-107. | |
15 | 周怡, 彭国文, 黄召, 等. 基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测[J]. 中国安全科学学报, 2024, 34(4): 145-152. |
Zhou Y, Peng G W, Huang Z, et al. Intelligent monitoring and prediction of deformation of uranium tailings dam based on SBAS-InSAR and BPNN[J]. China Safety Science Journal, 2024, 34(4): 145-152. | |
16 | 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. |
Weng R Y, Sun B, Zhao Y X, et al. Flow pattern recognition method of gas-liquid two-phase flow based on adaptive optimal kernel and convolution neural network[J]. CIESC Journal, 2018, 69(12): 5065-5072. | |
17 | Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. |
18 | 孙先亮, 李健, 韩哲哲, 等. 基于数据驱动的卷积神经网络电容层析成像图像重建[J]. 化工学报, 2020, 71(5): 2004-2016. |
Sun X L, Li J, Han Z Z, et al. Data-driven image reconstruction of electrical capacitance tomography based on convolutional neural network[J]. CIESC Journal, 2020, 71(5): 2004-2016. | |
19 | 王路瑶, 吴斌, 杜志敏, 等. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252-259. |
Wang L Y, Wu B, Du Z M, et al. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network[J]. CIESC Journal, 2018, 69(S2): 252-259. | |
20 | Rao R V, Saroj A. Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration[J]. Applied Thermal Engineering, 2017, 116: 473-487. |
21 | Asomaning S. The role of olefins in fouling of heat exchangers[D]. Vancouver: University of British Columbia, 1990. |
22 | Asomaning S. Heat exchanger fouling by petroleum asphaltenes[D]. Vancouver: University of British Columbia, 1997. |
23 | Sundaram B N. The effects of oxygen on synthetic crude oil fouling[D]. Vancouver: University of British Columbia, 1998. |
24 | Watkinson A P. Particulate fouling of sensible heat exchangers[D]. Vancouver: University of British Columbia, 1968. |
25 | Srinivasan M. Heat exchanger fouling of some Canadian crude oils[D]. Vancouver: University of British Columbia, 2008. |
26 | Feiz G. Annular heating probes in oil fouling: effects of wall shear stress[D]. Vancouver: University of British Columbia, 2015. |
27 | 李义, 刘颖慰, 都健, 等. 基于大数据建模的玉米淀粉糖工艺参数预测系统开发[J]. 当代化工研究, 2022(14): 145-152. |
Li Y, Liu Y W, Du J, et al. System development for the prediction of key parameters in corn starch sugar process based on big data modeling[J]. Modern Chemical Research, 2022(14): 145-152. | |
28 | 郜亚东, 李冠, 赵立峰, 等. 一种四分位数法优化的GM(1,1)模型在高危边坡监测中应用研究[J]. 城市勘测, 2023(3): 171-175. |
Gao Y D, Li G, Zhao L F, et al. Application of GM (1,1) model optimized by quartile method in high risk slope monitoring[J]. Urban Geotechnical Investigation & Surveying, 2023(3): 171-175. | |
29 | 杜林颖, 于鸿彬, 侯立国, 等. 改进的BP神经网络对飞机换热器结垢厚度预测[J]. 计算机仿真, 2020, 37(1): 27-30. |
Du L Y, Yu H B, Hou L G, et al. Prediction of fouling thickness of aircraft heat exchanger by modified BP neural network[J]. Computer Simulation, 2020, 37(1): 27-30. | |
30 | Zha W S, Liu Y P, Wan Y J, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. |
31 | Garcia C I, Grasso F, Luchetta A, et al. A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM[J]. Applied Sciences, 2020, 10(19): 6755. |
32 | 张术琳, 张亚楠, 田超, 等. 基于CNN的化工园区火灾火焰图像识别研究[J]. 中国安全科学学报, 2024, 34(1): 179-186. |
Zhang S L, Zhang Y N, Tian C, et al. Study on flame image recognition of chemical industrial park fires based on convolutional neural network[J]. China Safety Science Journal, 2024, 34(1): 179-186. | |
33 | Wang J, Sun L, Li H, et al. Prediction model of fouling thickness of heat exchanger based on TA-LSTM structure[J]. Processes, 2023, 11(9): 2594. |
34 | Barzegar R, Aalami M T, Adamowski J. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 415-433. |
35 | 吴婷婷, 许晓东, 吴云龙. 卷积神经网络中SPReLU激活函数的优化研究[J]. 计算机与数字工程, 2021, 49(8): 1637-1641. |
Wu T T, Xu X D, Wu Y L. Research on optimization of SPReLU activation function in convolutional neural network[J]. Computer & Digital Engineering, 2021, 49(8): 1637-1641. | |
36 | Kim T Y, Cho S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. |
37 | Hosseini S, Khandakar A, Chowdhury M E H, et al. Novel and robust machine learning approach for estimating the fouling factor in heat exchangers[J]. Energy Reports, 2022, 8: 8767-8776. |
[1] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
[2] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
[3] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
[4] | Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube [J]. CIESC Journal, 2025, 76(3): 975-984. |
[5] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[6] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
[7] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
[8] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[9] | Xinyu ZHENG, Zehua REN, Li ZHOU, Shiyang CHAI, Xu JI. Lattice energy regression model based on crystal graph convolutional neural networks [J]. CIESC Journal, 2025, 76(3): 1084-1092. |
[10] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
[11] | Dafen WANG, Lili TANG, Xinyan ZHANG, Chunyu NIE, Mingzhu LI, Jing WU. Multi-output tri-training heterogeneous soft sensor modeling based on time difference [J]. CIESC Journal, 2025, 76(3): 1143-1155. |
[12] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[13] | Xiaonan YOU, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Modeling method of depressurization separation process of the mixture of high-pressure polyethylene and supercritical ethylene [J]. CIESC Journal, 2025, 76(2): 695-706. |
[14] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
[15] | Heng ZHANG, Dianlu KUI, Hong CHANG, Zhigang ZHAN. Effect of mechanical stress on the interfacial transport properties of gas diffusion layers [J]. CIESC Journal, 2025, 76(2): 637-644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||